
Computational Construction Grammar:
A Usage-Based Approach

Elements in Cognitive Linguistics

DOI: 10.xxxx/xxxxxxxx (do not change)First published online: MMM dd YYYY (do not change)

Jonathan Dunn
University of Illinois Urbana-Champaign

Abstract: This Element introduces a usage-based computationalapproach to Construction Grammar that draws on techniques fromnatural language processing and unsupervised machine learning. Thiswork explores how to represent constructions, how to learnconstructions from a corpus, and how to arrange the constructions in agrammar as a network. From a theoretical perspective, this workexamines how construction grammars emerge from usage alone ascomplex systems, with slot-constraints learned at the same time thatconstructions are learned. From a practical perspective, this work isaccompanied by a Python package which enables linguists toincorporate construction grammars into their own corpus-based work.The computational experiments in this work are important for testingthe learnability, variability, and confirmability of Construction Grammaras a theory of language.
Keywords: computational linguistics, natural language processing,computational syntax, usage-based grammar, construction grammar,cognitive grammar, cognitive linguistics

JEL classifications: A12, B34, C56, D78, E90© Jonathan Dunn, 2023
ISBNs: xxxxxxxxxxxxx(PB) xxxxxxxxxxxxx(OC)ISSNs: xxxx-xxxx (online) xxxx-xxxx (print)

Contents

1 Representing Constructions 1
2 Learning Constructions 34
3 Forming the Constructicon 66
4 Conclusions 94

References 98

Computational Construction Grammar 1

1 Representing Constructions

This Element formulates an unsupervised computational approach to Con-
struction Grammar (CxG). From a scientific perspective, this work provides a
computational theory of human language that ranges from category formation to
the emergence of structure given exposure to usage. From a practical perspective,
it provides a tool for large-scale corpus analysis, useful even for linguists who
are not concerned with the specific hypotheses behind CxG.

What exactly is Computational Construction Grammar? First, CxG itself is
an approach to grammar based on constructions: symbolic mappings between
form and meaning at different levels of abstraction (Goldberg, 1995, 2006;
Langacker, 2008). When we say that constructions exist at different levels of
abstraction, this means that some are quite item-specific (like give X a hand)
and others are quite schematic (like the X’er the Y’er). In more formal terms,
constructions are constraint-based representations, a series of slots each of
which is defined by a specific slot-filler. These slot-fillers are constraints; for
example a schematic construction might have a syntactic slot-filler like noun
phrase or an idiomatic construction a lexical slot-filler like “hand.” Thus, the
level of abstraction depends on the kinds of constraints which a construction
contains.1 Part of learning constructions is to learn the categories or concepts
available for formulating such slot-constraints. Because constructions are
meaningful, slot-constraints can be semantic in nature and there is no strict
separation between purely schematic (i.e., syntactic) and purely meaningful
representations: usage-based slot-constraints combine form and meaning.

Computational CxG is a fully replicable and falsifiable implementation
of CxG that makes testable predictions about the grammars which would
emerge given certain sets of exposure (i.e., training corpora). From a linguistic
perspective, computational CxG is a discovery-device grammar, a mapping
between learning mechanisms and specific learned representations (Goldsmith,
2015). This is especially important for CxG, which views language not as a set
of innate structures but rather as a set of general learning mechanisms which
produce grammatical representations given exposure to previous production.
From a computational perspective, this discovery-device grammar is drawn
from unsupervised machine learning. There is a dual focus in this Element on
the theoretical properties of CxG and on the specific computational methods
used for simulating and experimenting with these theoretical properties.

1Note that we will use the term slot even if only a single lexical item can occupy that position.
This is because lexical items are one type of basic construction so that, even if a slot cannot
be filled by multiple items, it can still be viewed as a constraint on the more lexical side of the
lexico-grammatical continuum.

2 Elements in Cognitive Linguistics

The goal is to provide a replicable and falsifiable theory of Construction
Grammar in the form of a computational model. The first question involves the
learnability of representations: to what degree can grammatical generalizations
emerge from usage with minimal starting assumptions? Linguistic theory has
often assumed with no evidence that usage alone is not sufficient to make
generalizations. This Element probes just how much structure can be learned
from usage alone. Knowledge-based approaches, which rely on hand-crafted
representations of constructions that are based on the introspections of trained
linguists, are unable to answer questions about learnability because they depend
entirely on the introspections of those who already possess linguistic knowledge.

The second question involves the variability of representations: what are
the sources of difference in grammar and in usage across individuals, across
registers, and across populations? Variation is a core phenomenon of language.
Recent computational studies have further illustrated how pervasive (Dunn &
Nini, 2021) and how predictable (Dunn, 2018a) such syntactic variation is.
This Element shows how grammatical structures differ across register and also
how constructions and construction grammars become more complex given
increased exposure: structure accumulates as existing constructions enable the
discovery of more complex constructions which depend on them.

The third question involves the confirmability of representations: to what
degree are claims about the meaning or interpretation of constructions stable
and reproducible? Because cognitive linguistics focuses heavily on meaning,
introspections are made about everything from metaphoricity (Dunn, 2010) to
the implications of idiomatic utterances in slightly different forms (Dunn, 2013).
Intuitions about meaning are an essential piece of linguistic methodology. But
how do we test the robustness of those intuitions, when every practitioner knows
the difficulty of operationalizing semantic concepts? The approach in this work
is to first learn constructions without reference to a linguist’s intuitions about
meaning and then to analyze those constructions using introspection. This
approach removes the circularity involved in both hypothesizing and testing
constructions using the same data source (our own introspections).

For these reasons, we mean by Computational Construction Grammar
a theory of language implemented as a computational model which makes
predictions about the grammar of constructions and their relationships to one
another given exposure to the unelicited usage found in a corpus (c.f., Wible and
Tsao 2010, 2020). From this perspective, Computational Construction Grammar
is not a collection of manual annotations of specific construction types (although
it provides such a constructicon as output). Rather, it is an implemented theory
of the role of exposure in the emergence of both linguistic categories and the
structures which depend on them, of the range of possible grammars, and of the

Computational Construction Grammar 3

Figure 1 Structure of this Element. Basic Constructions are the categories
which form slot-constraints; First-Order Constructions are chunks or sequences
of slot-constraints; Second-Order Constructions instead use existing first-order

constructions as slot-constraints; and Third-Order Constructions are larger
families containing multiple related constructions.

sources and manifestations of grammatical variation.
The approach to computational CxG taken here is based on the underlying

idea that constructions are learned starting with surface-level chunks which
are then increasingly generalized given distributional information to form
more and more abstract representations. This is implemented in the form of
(i) scaffolded structure in which the same algorithm is applied to new input
together with its own previous outputs (c.f., Section 2.7) and (ii) higher-order
constructions which use first-order chunks as slot-constraints (c.f., Section 2.6).
From a semantic perspective, this is informed by the Principle of No Synonymy
(Goldberg, 1995) in which each entrenched construction will acquire a unique
meaning, whether that is semantic meaning (propositional), pragmatic meaning
(non-propositional), or social meaning (an externally-conditioned variable).
Given the possibility of differences in social meaning (Dunn, 2018a), this is
better formulated as the Principle of No Equivalence (Benoît & Morin, 2023).
Regardless of the name, however, the idea is that the entrenchment of unique
forms implies the unique meaning of these forms on some level. In other words,
these constructions are form-meaning mappings, with the caveat that (i) social
meaning is a kind of meaning and (ii) representing the semantics for each
construction computationally remains a problem for future work.

Recent work in Fluid Construction Grammar (FCG: Beuls and Van Eecke
2023; Doumen, Beuls, and Van Eecke 2023; Nevens, Doumen, Van Eecke, and
Beuls 2022) provides an alternate approach to CxG which still satisfies our core
criteria of learnability, variability, and confirmability. This recent work focuses
instead on the idea that the learning process is guided by intention reading,
either by situating the learning process within embodied agents or by including
semantic annotations of corpora (thus, starting with a set of basic semantic
primitives). The starting assumption, in other words, is that the language learner

4 Elements in Cognitive Linguistics

is able to determine the meaning of each utterance by its specific context.2
This recent work in FCG has been ground-breaking in a number of areas

that have been weaknesses of approaches which depend on large background
corpora: the exposure is specific to the individual learner and is grounded
within meaningful interactions. By contrast, approaches based on large corpora
necessarily work with aggregated exposure (with some exceptions like Dunn and
Nini 2021) and in doing so remove that exposure from individual communicative
situations. The main difference in these frameworks is the use of background
data as indirect exposure, as shown in Figure 2. By viewing the corpus as a
store of linguistic experience we can learn aggregated representations like word
embeddings or association measures. But doing this necessarily abstracts away
from the full communicative situation involved with each utterance. On the
other hand, acquiring linguistic knowledge necessarily requires such abstraction.

The first section of this Element, Representing Constructions, presents
a computational and usage-based approach to representing constructions, as
outlined in Figure 2. These representations are computational because they exist
as fully implemented data structures. And they are usage-based because they
are learned in a data-driven manner from actual corpora. These constructional
representations include both slot-constraints (like semantic domains or syntactic
categories) as well as hierarchical relationships between slots.

The second section, Learning Constructions, focuses on the mechanisms
of entrenchment and emergence in which particular constructions become a
part of the grammar and are then abstracted away from specific lexical phrases.
This is a form of discovery-device grammar which requires both (i) a method
for searching through potential constructions and (ii) a measure of quality
for potential grammars. This section introduces the idea of second-order
constructions, in which slot-constraints are satisfied by existing constructions.
It also introduces the idea of scaffolded structure in which representations grow
more complex over new iterations of exposure as the current constructicon
enables the emergence of more complex constructions.

The third section, Forming the Constructicon, explores the emergent
properties of a grammar as a network of constructions rather than a set of
isolated representations. This begins with a look at both the growth of the
constructicon and at change in the constructicon as constructions are forgotten.
We then use relationships between constructions to create a network that contains
families of related constructions. This leads into an examination of emergent
relationships between slot-constraints, in which we observe coercion between
basic level categories when they appear in the same construction.

2If this were entirely true, of course, humans would not need language in the first place.

Computational Construction Grammar 5

Outline of Section 1. We begin this first section by introducing the
basic descriptions that will be used to notate constructions, along with the
computational challenges involved in learning these representations (Section
1.1). We then frame the problem of the emergence of linguistic structure as an
unsupervised learning problem (Section 1.2) which involves using distribution
to measure relationships between words (Section 1.3) in order to group them into
categories which can be used to formulate slot-constraints (Section 1.4). We then
consider attraction, or the relationship between a slot-filler and a slot-constraint
(Section 1.5). This leads us to the related problem of finding relationships
between slots within a construction (Section 1.6). We end by considering the
relationship between computational and cognitive representations, the first step
in relating this approach to the non-computational literature (Section 1.7).

An important part of this work is that all aspects of the analysis are available
in a Python implementation. First, a Python package is available for both
learning and then using construction grammars for actual problems in linguistic
analysis.3 Second, the Element is accompanied by a containerized notebook
which contains the data and the environment necessary to undertake working
analyses using the Python package.4 Third, the supplementary materials contain
detailed information for each of the register-specific grammars of English that
are discussed here.5

1.1 Constructions as Slot-Constraints
This section focuses on how to represent constructions within an unsupervised

computational framework. A construction is a sequence of slots, each of
which is defined using a slot-constraint. For consistency, even a position
which allows only a single filler is called a slot: a slot with an idiomatic lexical
constraint. We notate constructions as in (1.1a) below, a simple convention that
allows us to use the same notation here and in the Python implementation. In
this notation, the brackets indicate the boundaries of the construction and the
dashes indicate the boundaries between slots within the construction (thus, this
example has four slots). The problem of learning the boundaries of constructions
and of slots is a matter of segmentation that is explored further in Section 2.2.

(1.1a) [syn: NP – sem: <transfer> – syn: NP – syn: NP]

3https://www.github.com/jonathandunn/c2xg
4https://doi.org/10.24433/CO.9944630.v1
5https://doi.org/10.17605/OSF.IO/SA6R3

6 Elements in Cognitive Linguistics

Figure 2 Learning an Emerging Ontology of Slot-Constraints
(Acquiring Linguistic Knowledge and World Knowledge)

Each slot is described using the constraints which define it. These constraints
are written using two labels: first, the type of representation is given in small
caps: lex refers to lexical representations, syn to syntactic representations,
and sem to semantic. Within each type of representation, the slot-filler is
the particular category used to define the contents of that slot. For example,
the syntactic constraint NP refers to a noun phrase and the semantic constraint
<transfer> refers to any item from that semantic domain. These are introspection-
based examples as we have not yet developed the unsupervised ontology of
slot-constraints which, in later sections, will be used to formulate constructions.

The problem of learning a discrete set of constraints for a given language is a
matter of category formation, explored further in Sections 1.3 and 1.4. Given
previous work in cognitive linguistics we would expect these categories to have
a proto-type structure and to differ across languages (Taylor, 2004). This means,
then, that the first step in learning a grammar is to model category formation and
the emergence of concepts. We refer to the categories with which slot-constraints
are defined as basic constructions, the primitive mappings between form and
meaning. Here we approach that problem using unsupervised machine learning
applied to large unannotated corpora. Categories, like constructions themselves,
emerge given exposure to usage.

The difference between syntactic and semantic categories here is not absolute:
the semantic constraints reflect mostly non-syntactic information but the syntactic

Computational Construction Grammar 7

constraints will necessarily include semantic information. The basic distinction
reflects the two different approaches used to observe the distribution of words:
syntactic constraints rely on local observations (embeddings trained to predict
each word given its immediately surrounding context) and semantic constraints
on non-local observations (embeddings trained to use each word to predict the
content words which occur within a surrounding window).

The problem of selecting a set of slot-constraints for each potential construc-
tion is explored further in Sections 2.3 and 2.4. Construction grammars present
a more difficult search problem than other types of grammars because we must
search across types of constraints (like syntactic vs semantic) as well as specific
slot-fillers (like different semantic domains). This creates a larger hypothesis
space of potential grammars. An important part of CxG as a theory of human
language is that constructions are hypothesized to vary in their level of abstract-
ness (e.g., idiomatic constructions) and to include meaning-based constraints
(e.g., semantic domains). Both of these attributes make searching more difficult
because we must consider more potential constructions. From a usage-
based perspective, the only way to know which potential constructions have
become entrenched is to observe the usage of a community of speaker-hearers,
as contained in a corpus.

What exactly is a potential construction? Consider the construction in (1.1b),
which differs from (1.1a) in that the final slot-constraint is limited to the lexical
item a hand. The utterance in (1.1c) is a token or example of the construction
in (1.1b), but it is also a token of the construction in (1.1a). Thus, this utterance
is described by two separate constructions in the grammar. In fact, we could
formulate a large number of alternate constructions which would capture most
of the same sets of utterances. We consider the relationship between grammar
complexity and the number of idiomatic constructions in Section 2.7 and the
problem of similarity networks between constructions in Sections 3.3 and 3.4.
The point here is that the search for constructions is made more difficult by these
overlapping constructional representations.

(1.1b) [syn: NP – sem: <transfer> – syn: NP – lex: a hand]
(1.1c) The neighbor gave us a hand.

A closely related problem is the matter of implicit relationships between
slot-constraints. For example, in (1.1a) the main verb is represented using
a semantic constraint which, in fact, does not specify that only verbs can
occupy that position. However, given the context of a double object argument
structure, in practice only verbs would be observed occupying that central slot
in the construction. This kind of implicit influence between slot-constraints, an

8 Elements in Cognitive Linguistics

emergent property of constructions, in considered further in Section 3.5.
The combination of idiomatic constructions, meaning-based slot-constraints,

and implicit relationships between slots all serve to make the problem of
learnability in construction grammar more difficult than in other syntactic
paradigms. As we will see, however, it remains possible to learn a constructicon
from observed usage while making no starting assumptions about the types of
structures the grammar contains. This problem is revisited in the discussion of
parsing constructions in Section 2.5.

Name and Abbreviation Description Words
Project Gutenberg a PG Books from 1850 to 1919 529 mil
Wikipedia b WK Non-fiction articles 138 mil
European Parliament c EU Speeches in proceedings 56 mil
News Comments d NC Comments on newspaper articles 139 mil
Product Reviews e PR Reviews from Amazon.com 170 mil
Open Subtitles f OS Dialogue from movies and tv 198 mil
Blogs g BL Web-crawled blog posts 111 mil
Tweets h TW Tweets from six countries 660 mil

Size used for semantic domains 2.0 bil
aRae, Potapenko, Jayakumar, and Lillicrap (2019)
bOrtman (2018)
cTiedemann (2012)
dKesarwani (2018)
eZhang, Zhao, and LeCun (2015)
fLison and Tiedemann (2016)
gSchler, Koppel, Argamon, and Pennebaker (2006)
hDunn (2020)

Table 1 List of Corpora Used in this Element

The list of corpora used in this work is given in Table 1. For learning
embeddings (Section 1.3), we use the entire corpus of approximately 2 billion
words; for all other experiments, we use a random subset from each source as
described in the specific sections. These corpora provide a range of written
registers that we will treat as the production to which a learner is exposed.

Computational Construction Grammar 9

1.2 Lexical Constraints
In this and the next sections we focus on the problem of learning slot-

constraints from usage, starting here with lexical constraints. The first challenge
for learning the grammar of a particular language is to determine the ontology
of slot-fillers within each type of constraint. Rather than formulate particular
slot-constraints by hand as a set of syntactic and semantic primitives, our
grammar instead specifies the process by which specific categories emerge given
exposure to usage. These basic constructions, the categories of a language,
are partly based on meaning and partly on form, resulting in constructions which
function as mappings between form and meaning.

Lexical constraints are the first and the simplest types of slot-constraints,
in the sense that syntactic and semantic constraints are based on categories
of lexical items. Thus, lexical constraints come first, as explored further in
models of scaffolded structure in Section 2.7. While simpler, there are still two
problems that need to be solved: segmentation (what counts as a word) and
selection (which words are learned and belong in the lexicon).

In the first case, defining a word, we analyze word-forms using white space,
so that the utterance in (1.2a) contains the lower-cased word-forms listed in
(1.2b). Given the inflectional morphology of English, we know that message is
the singular form, thus part of the same paradigm as the plural form messages. In
many cases we want to generalize across particular morphological forms within
the same paradigm. However, there are some item-specific constructions which
are sensitive to particular word-forms: for example (1.2c) has an interpretation
distinct from that of (1.2a). Thus, we want to restrict some constraints to specific
word-forms and while we want others to generalize across paradigms.

(1.2a) I got the message.
(1.2b) [i, got, message, the]
(1.2c) I got the messages.

From a practical perspective, larger word classes will be captured by the
distributional constraints described in the next section. For example, in the
case of (1.2a), both the singular and plural could be described as members
of a semantic domain for communication objects (email, letter, voicemail,
etc). We use character-based embeddings, which improve the representation
of morphological information, during category formation (Section 1.4). The
expansion of computational CxG to include constructional morphology remains
a problem for future work.

10 Elements in Cognitive Linguistics

npmi�𝑥, 𝑦� � �ln
𝑝�𝑥, 𝑦�

𝑝�𝑥� � 𝑝�𝑦��� ln 𝑝�𝑥, 𝑦� (1.1)

As part of learning the vocabulary of lexical constraints, we allow for multi-
word expressions using pointwise mutual information (pmi) as a measure of
association (Church & Hanks, 1990). This means that lexical phrases such
as public domain or ronald reagan or st louis can be treated as a single slot-
filler while maintaining an entirely unsupervised framework. Here we use a
normalized variant, the npmi, which restricts values to between -1 and 1 (Bouma,
2009). Given that we learn grammars across different amounts of exposure, this
normalization allows us to maintain a similar threshold across the total number
of words observed. This npmi is shown in the equation above, with the first
portion indicating the standard pmi, which is then normalized through dividing
by the negative log of the probability that 𝑥 and 𝑦 occur together.

Names Places Words with Spaces Noun Phrases
monte cristo san francisco vice versa lemon juice

da vinci monte carlo per cent frying pan
van buren corpus christi habeas corpus nineteenth century

genghis khan new york don t protective tariff
anglo saxon champs elysees bas reliefs coral reefs

Table 2 Examples of Lexical Constructions (PG)

Some examples of multi-word phrases that are discovered using the npmi are
shown in Table 2, derived from 10 million words from the Project Gutenberg
corpus with a threshold of 0.75. The first column represents proper names, of
people and groups of people. The second column represents places. The third
represents words which include a space in the orthography, mostly borrowings
but also, given our pre-processing, contractions such as don t. The final column
represents noun phrases which occur together so regularly that they have become
a single item. For the purposes of the grammar, these phrases are added to the
lexicon and treated as a single word.

Computational Construction Grammar 11

1.3 Distributional Constraints
This section presents two types of slot-constraints which are formulated using

word embeddings and, at a basic level, capture distributional information from
a background corpus. The basic approach here is to formulate slot-constraints
within an embedding space and then to view the centroid of each slot-filler as its
proto-type or exemplar. We use two distinct embedding spaces to focus on two
distinct pieces of linguistic information. In the first case, we want more syntactic
constraints (syn) to capture local co-occurrence information. For example, in
the phrase I want to X, the slot represented by X is almost certainly a verb in the
infinitive form. In the second case, we want more semantic constraints (sem)
to capture non-local co-occurrence information. For example, a phrasal verb
like pop out is more likely to occur along with contexts like I didn’t mean to
say it or it fell apart. This section introduces and evaluates these distributional
constraints from a computational perpsective.

We want to avoid building specific structures into the model: for example,
if we assume a distinction between noun and verb, we have to support that
assumption with a further assumption about a genetic predisposition toward this
category system in order to justify hard-coding them into our ontology. We take
a different approach in which the formation of linguistic categories follows from
the general language learning framework. Thus, our syntactic and semantic
primitives are entirely unsupervised, learned only from the observed distribution
of words in the background corpus. The power of distributional representations
is that they create a network of word-level relationships: the more vocabulary
the learner has observed, the more links there are in this network. Denser
networks, in turn, lead to more robust categories.

We model the distribution of words in a corpus using character-based word
embeddings within the fastText framework (Grave, Bojanowski, Gupta, Joulin,
& Mikolov, 2018). For syntactic categories we use a continuous-bag-of-words
model (cbow: Mikolov, Chen, Corrado, and Dean (2013)) and for semantic
categories a skip-gram model (sg: Mikolov, Sutskever, Chen, Corrado, and
Dean (2013)), both trained using negative sampling. These word embeddings
were originally developed in the context of language modelling, in which the
goal is to predict which word comes next as we move through a corpus. Word
embeddings are also called dense representations because they represent a word
as a fixed length numerical vector with no sparse elements. A detailed analysis of
these embeddings is available elsewhere (Dunn, 2022b). From our perspective
here, the purpose of dense word representations is to maintain an isomorphic
relationship between (i) the network of words in the set of embeddings (the
model) and (ii) the lexicon of a speaker of the language (the lexical semantics

12 Elements in Cognitive Linguistics

that is being modelled). This means that the semantic relationships which
make road and street similar for speakers should be mirrored in the relationship
between their word vectors as measured, for example, using cosine similarity.

Drawing on the language modelling task, these word embeddings are trained
using a logistic regression classifier in which each word in the vocabulary
is an observation. The number of features in the classifier corresponds to
the dimensionality of the embeddings: for example, we use 100-dimensional
embeddings which means that each word is represented by 100 feature weights.
During training, these weights are used to predict which words occur together
and, after training, they are exported as the embeddings or word vectors.

The distinction between cbow and sg embeddings has to do with the
prediction task used during training. For syntactic constraints we use the cbow
task with a context window of 1. For each word in the corpus, the classifier is
trained to predict the target word (D in Figure 3) given the context words (C
and E in the figure). The window size of 1 means that at most two words will
be used for prediction. Thus, for cbow, the adjacent context predicts the target
word (thus, the target is shown in bold). This algorithm is suitable for finding
more schematic or syntactic constraints because it is largely focused on how
words are arranged within a sequence. For example, in the phrase I want to X a
book, the predicted embedding for X would be drawn from the embeddings for I
want to on the left and a book on the right. These embeddings thus represent
joint form-meaning patterns: options here would be read, write, edit but not
blue, the, dog, capturing both part-of-speech and semantic information.

Figure 3 Optimization Task for the cbow Algorithm (Syntactic Constraints)

Figure 4 Optimization Task for the sg Algorithm (Semantic Constraints)

For the sg embeddings, on the other hand, the prediction task during training
uses the target word to predict the context words, as shown in Figure 4. Here
we use the sg task with a context window of 5, which means that the classifier
is trying to predict up to five words in each direction from the target (thus, the
context slots are shown in bold). For example, if X above in I want to X a
book is read, these embeddings focus on words which typically belong to same

Computational Construction Grammar 13

semantic script. We might expect page, topic, study to be close to read in this
embedding space, but not run, limp, walk. In this sense, the sg algorithm is
suitable for finding more meaning-based constraints because it is largely focused
on how words occur within a given frame or script regardless of the syntactic
arrangement of those words.

The main distinction, then, is that cbow with a small window size is focused
on the arrangement of words while sg with a large window size is focused on the
content of words. The boundary between purely syntactic and purely semantic
constraints is not always clear, one of the starting observations for work in
construction grammar. Given the discussion above, syn constraints will certainly
contain some semantic information, although it is less likely that sem constraints
are limited to a single part-of-speech. The labels syn and sem were chosen
as a convenient short-hand for these two facets of distributional information.
Another way to view the distinction between types of slot-constraints is the
scope of each slot-filler: lex constraints are fixed to one item per category, sem
constraints have between 10 and 50 items per category, and syn constraints are
more unspecified with dozens or hundreds of items per category. In other words,
syntactic constraints leave slots only partially filled because they are based on
schematic rather than meaning-based information.6

These word embeddings are thus a type of self-supervised language model
which are trained to predict held-out words from the corpus (i.e., each target
word becomes a held-out prediction in the cbow task). The difference between
them is that the syntactic word vectors are optimized to predict local adjacent
contexts and the semantic word vectors are optimized to predict the larger
context window (e.g., that street and road both occur with cross or traffic).
The average sentences in our corpora range from 26-27 words long (Project
Gutenberg and the European Parliament) to 15-16 words long (tweets and
subtitles). The semantic word vectors thus capture a larger sub-portion of each
sentence while the syntactic word vectors observe only adjacent context.

𝑇𝑎𝑟𝑔𝑒𝑡 � 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 � 𝑇1𝐶1 � 𝑇2𝐶2 � 𝑇3𝐶3...𝑇𝑛𝐶𝑛 (1.2)

These embeddings use the negative sampling approach to training, in which
the actual context words are classified against 𝑛 random samples drawn from
the vocabulary (here 𝑛 � 100). Thus, the probability of the actual context

6Ideally constructions would also allow unfilled slots as a way of capturing non-contiguous
constructions. Such unfilled slots are not directly included in this present work (although second-
order constructions in Section 2.6 have some properties of non-contiguous constructions). This
remains a challenge for future work and is most likely to be addressed by including null or
meaningless slot-constraints as an additional level of representation.

14 Elements in Cognitive Linguistics

should be higher than the probability of the randomly sampled context: in cbow,
𝑝�𝑡𝑎𝑟𝑔𝑒𝑡¶𝑐𝑜𝑛𝑡𝑒𝑥𝑡� vs 𝑝�𝑟𝑎𝑛𝑑𝑜𝑚¶𝑐𝑜𝑛𝑡𝑒𝑥𝑡�. In other words, the probability of
the actually observed target word should be higher given the context than the
probability of the randomly sampled word it is compared with. The notion of
probability in this case is replaced with the dot product of the word vectors.
Thus, as shown below, the probability of the target given the context word is
calculated as the elementwise multiplication of the two current word vectors
(i.e., their dot product). During training the model weights (i.e., the word
vectors) are gradually updated to maximize the overall prediction accuracy.

𝜎�𝑝� � 1
1 � 𝑒�𝑝 (1.3)

Logistic regression is so-named because it depends on the logistic or sigmoid
function to make predictions. The dot product used above is scalar, but it is not
a probability. Here the sigmoid function is used to convert this into a probability
with values further away from the mid-point. After passing the dot product
through the sigmoid function, the prediction of real vs random contexts falls
between 0 and 1, with the goal during training of maximizing the probability
of the actual context. For the sg task, the prediction of each context word is
assumed to be independent of the other context words for simplicity, so that it
remains a binary classification problem.

To summarize, the cbow algorithm optimizes word vectors to predict each
target word given the immediately adjacent context words. The sg algorithm
optimizes word vectors to predict each context word in a bi-directional five-word
window given the target word. The model weights are trained using logistic
regression to predict each target position in the training corpus, with the dot
product standing in for probability. After training, the model weights are used
to represent each word. We use the fastText-based character variant for these
word vectors which operates by dividing each word into character n-grams (thus,
street becomes stre + tree + reet), with the final word vector a simple sum of
each component sub-word n-gram. This approach provides additional flexibility
in computing a word vector for those words which were not observed in the
training corpus (out-of-vocabulary words).

A recurring issue with word embeddings is that they are somewhat unstable
(Burdick, Kummerfeld, & Mihalcea, 2021; Hellrich, Kampe, & Hahn, 2019).
This means that we could observe potentially wide variation in word vectors
given similar training data across multiple iterations. One reason is that the
training process depends on randomly sampled negative examples, so that we
can improve stability by using a relatively large 𝑛 (Levy, Goldberg, & Dagan,

Computational Construction Grammar 15

Figure 5 Nearest Neighbor Overlap for cbow Embeddings (𝑘 � 50). Higher
overlap means that embeddings are more stable across random starts.

2015). We can evaluate the stability of an embedding model by shuffling a
corpus and retraining multiple times under the same conditions. Here we
shuffle and retrain both the cbow and sg models twice each using the corpus
described in Table 1. The similarity of individual words across embeddings can
be measured by retrieving the 𝑘 nearest neighbors in both sets of embeddings
and quantifying the overlap: 100% overlap would indicate complete agreement
but a lower score like 25% would indicate minimal overlap.

The violin plot in Figure 5 shows the distribution of nearest neighbor overlaps
for the reshuffled and retrained cbow embeddings: this represents agreement
from the same model trained on the same corpus shuffled so that it is observed
in a different order. The y-axis represents the percent of overlap, with higher
values indicating higher stability. The x-axis represents the lexicon binned
into ages of acquisition, taken from participant-based ratings in Kuperman,
Stadthagen-Gonzalez, and Brysbaert (2012). The width of each bin corresponds
to the number of words in that bin, so that the 0-4 year group represents a smaller
portion of the lexicon than the 8-12 year group. Thus, this figure shows that
there is a high stability within these local embeddings, with an average of 84%.

16 Elements in Cognitive Linguistics

Figure 6 Nearest Neighbor Overlap for sg Embeddings (𝑘 � 50). Higher
overlap means that embeddings are more stable across random starts.

The cbow embeddings are trained for 20 epochs with 100 negative samples per
classification and sub-word n-grams ranging from 3 to 6.

Stability for the long-distance co-occurence relationships captured by the
sg embeddings is shown in Figure 6. We are again measuring the overlap
between nearest neighbors for models trained on the different shuffles of the
same corpus. The overall overlap here is lower, an average of 68%. This lower
overlap results from the nature of the task: here the model is optimized to predict
the context given the target word and a wider range of factors influence this
type of distribution. This remains, however, a relatively stable representation.
The sg embeddings are trained for 20 epochs with 100 negative samples per
classification and sub-word n-grams ranging from 3 to 6.

We have been using the local context captured by the cbow task to represent
syntactic information and the non-local context captured by the sg task to capture
semantic information. However, there is no strict division between those factors
which contribute to these two ways of viewing the distribution of words. How
realistic is the assumption that these are two separate types of representation? In
Figure 7 we compare the overlap of nearest neighbors across sets of embeddings

Computational Construction Grammar 17

Figure 7 Nearest Neighbor Overlap for sg vs cbow Embeddings (𝑘 � 50).
Lower overlap means that the two sets of embeddings do not contain redundant

or duplicated information.

in order to determine the degree to which these embeddings actually capture
different aspects of co-occurrence. The basic question here is whether the local
and non-local algorithms do, in fact, capture different linguistic attributes of
word distribution. They do: the overall overlap is much lower than the stability
measure above, with an average overlap of 21%. To summarize, then, this
first set of evaluations tell us that each set of embeddings is relatively stable,
although the local cbow embeddings are more stable than the sg embeddings.
And it also tells us that there is a minimum of information shared between the
two optimization tasks. Thus, these embeddings represent two distinct types of
linguistic behaviour.

Although the embeddings are both stable and distinct, to what degree do they
capture syntactic or semantic information? We can answer this for English using
existing manual annotations. For each word in the lexicon, we take syntactic
annotations from a participant-based concreteness task (Brysbaert, Warriner,
& Kuperman, 2014) and semantic annotations from domains in the ucrel
semantic tagger (Piao, Bianchi, Dayrell, D’egidio, & Rayson, 2015). These

18 Elements in Cognitive Linguistics

Figure 8 Percent Nearest Neighbors Belonging to Same Syntactic Category.
Higher values indicate that the cbow embeddings capture syntactic information.

syntactic and semantic categorizations are not a part of the computational CxG
itself. Rather, we are using them to understand the degree to which data-driven
representations relate to introspective categorizations. An evaluation of the
cbow embeddings against syntactic annotations is shown in Figure 8 for eight
parts-of-speech. For each word in the lexicon, we retrieve its five nearest
neighbors using cosine distance as above. We then measure the overlap in
annotations for each neighbor. For example, if a verb is most similar to four
verbs and one noun, its overlap would be 4 out of 5 or 80%. This measure of
overlap captures the relationship between nearest neighbors in the embedding
space and the discrete part-of-speech annotations. The blue bars measure the
overlap of the model while the orange bars provide a random baseline; given
the large number of open-class nouns, for example, the random chance for
overlap is rather high. While there is in no case a perfect alignment between
introspection-based annotations and the nearest neighbors in the embeddings,
there is a very significant overlap. The same measure of overlap is shown
in Figure 9 between the sg embeddings and the semantic annotations, where

Computational Construction Grammar 19

Figure 9 Percent Nearest Neighbors Belonging to Same Semantic Category.
Higher values indicate that the sg embeddings capture semantic information.

each letter represents a specific high-level domain. The overlap here is lower
on average, but as shown by the random baseline the correspondence remains
highly significant: there is much more agreement between the embeddings and
the annotations than by chance. Thus, we are using two sets of embeddings that
capture different aspects of co-occurrence, each of which is relatively stable and
largely overlaps with manual introspection-driven annotations.

The discussion above defends the decision to use a cbow model for schematic
syntactic information and a sg model for information about semantic frames. But
why would we rely on non-contextual embeddings rather than context-specific
transformer-based embeddings, such as those from bert (Devlin, Chang, Lee, &
Toutanova, 2019)? First, we have a goal of understanding the degree to which
grammatical structure, as described by CxG, can be learned from a reasonable

20 Elements in Cognitive Linguistics

amount of exposure. Because transformer-based models are trained on massive
corpora, often exceeding 100 billion words, there is simply no way to understand
the relationship between exposure and emergence given such methods. Second,
the current state of our knowledge of word embeddings derived from the cbow
and sg tasks is much greater as these models are generally more transparent.
The general approach to CxG described here is forwards-compatible with
transformer-based language models; however, we formulate constraints in terms
of non-contextual embeddings for these two reasons: the use of smaller corpora
and the transparency of the algorithm. The main idea is the same: a distributed
representation which is self-supervised in the sense that it is trained to predict the
observed distribution of words in the background corpus. From this perspective,
there is a family similarity between these embeddings and those which depend
on the masked language modelling task (like bert): the language learner is
trying to understand what words will come next and every utterance in a corpus
provides both positive and negative evidence that is used to support learning.

The traditional approach within linguistics is to rely on discrete categories
like noun or verb as slot-constraints, largely out of convenience. At the same
time, we also expect from research in psycholinguistics that such categories have
a proto-type structure that is not captured by such discrete labels. The approach
to slot-constraints described above instead uses distributed representations
(as would any transformer-based model). What is involved when we switch
from a discrete to a distributed approach to representation? First, there is
a robust line of work in computational linguistics showing that distributed
representations provide better models of language than discrete representations
(Bengio, Ducharme, Vincent, & Jauvin, 2003); this computational work is
not incompatible with experimental linguistics. Second, there is a close
correspondence between distributed word embeddings and association measures;
for example, there is a close correspondence between a matrix of positive
pointwise mutual information scores (a more traditional association measure)
and sg embeddings with negative sampling (Levy et al., 2015). Essentially, this
means that the network information contained in word embeddings is comparable
to that contained in traditional association measures. But, fourth, the true
strength of distributed word embeddings is not in the word vectors themselves
in isolation but in the neighborhood similarity within the embedding space
(c.f., Linzen 2016). As explored in the next section, distributed representations
are meaningful only within the context of a larger embedding space. Finally,
fifth, when comparing distributed representations with discrete categories a
common critique is that the distributed representations are black boxes of whose
inner workings we have no understanding. On the contrary, we have a strong
understanding of the behavior of these embedding spaces in terms of stability

Computational Construction Grammar 21

(Hellrich et al., 2019), in terms of cross-linguistic consistency (Burdick et al.,
2021), in terms of cross-register consistency (Dunn, Li, & Sastre, 2022), and in
terms of variation across dialects (Dunn, 2023b). While traditional linguistics is
more comfortable with discrete representations, then, distributed representations
are not black boxes.

1.4 Proto-Types and Exemplars
In the previous section we used the cbow and sg algorithms to learn word

vectors to capture syntactic and semantic relationships between words, where
syntactic relationships capture local adjacency and semantic relationships capture
non-local co-occurrence patterns. Constructions consist of slot-constraints that
define the set of words which can occupy a particular slot. In order to define a
slot-constraint, we need to move from pairwise similarity relationships between
words to groups of closely related words. In computational terms, this is a
clustering problem that represents the formation of categories.

From the perspective of cognitive linguistics, we have two requirements for
such a clustering algorithm: First, the clusters must have a proto-type structure
in which we can measure the degree to which a particular member is a central
example of the category or a peripheral member. In computational terms, this
means that we need to be able to determine how close to the centroid any
particular example is. Second, the clusters must be centered around an exemplar
which provides a good example for that category. Given these requirements,
we use the k-medoids algorithm for clustering word embeddings into syntactic
and semantic word classes (Schubert and Lenssen 2022; more precisely, the
algorithm is called pam for Partitioning Around Medoids).

𝑐𝑜𝑠𝑖𝑛𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒�𝐴, 𝐵� � 1 �
𝐴 � 𝐵Ô

𝐴2
�

Ô
𝐵2

(1.4)

The k-medoids algorithm is a partioning approach to clustering, similar to
k-means. The overall objective is to reform clusters until the all words are
closest to their cluster center; while k-means quantifies the centroid of all words
in a cluster using Euclidean distance, k-medoids uses an actual word as the
centroid and allows other distance metrics. Here we use cosine distance, shown
in the equation above. We previously used cosine similarity to define nearest
neighbors within an embeddings space; cosine distance is the inverse of cosine
similarity. The measure is the the dot product of two vectors (c.f., equation 1.2)
normalized by the absolute values of those vectors, as shown above. Thus, our

22 Elements in Cognitive Linguistics

category formation algorithm incorporates the previous definition of nearest
neighbors within the embedding space.

We undertake clustering using the embedding spaces learned on the entire
corpus collection to avoid the computational overhead of retraining these
embeddings. However, the clustering itself only observes the specific lexicon
found in a smaller set of exposure. For example, for this evaluation we observe
10 million words from the Project Gutenberg corpus, finding those lexical items
which have a frequency of at least one part per million. With cosine distance for
forming a network of relationships between words, the clusters are formed using
only this sub-set of the vocabulary. K-medoids has access to the relationship
between each word and every other word. Thus, larger vocabularies (the result
of more exposure) have richer networks which, in turn, result in more precise
syntactic and semantic categories. The evaluation here involves a lexicon of
approximately 30k words.

Like k-means, the k-medoids algorithm requires a strict definition of 𝑘 , the
number of output clusters. The syntactic (cbow) clusters need a smaller number
of categories in order to provide a greater amount of generalization within
each category. But the semantic (sg) clusters should allow a larger and more
open-ended range of categories because the number of semantic domains is
itself not particularly limited. Our basic approach is to define the range of
numbers of categories for each type of constraint and then search for the exact
number of categories which best describes the current lexicon. For syntactic
categories, this search ranges from 25 to 250 and for semantic categories from
250 to 2,500. This search provides flexibility in finding the number of categories
which best reflects the observed usage while still constraining the magnitude of
the search space.

How do we know when the overall categorization with, say, 1,800 semantic
domains is the best organization of the lexical network? We measure the
quality of a clustering using the silhouette metric (Rousseeuw, 1987), which
determines for each point how closely it fits into its current cluster and how
distant it is from the surrounding clusters. The values range from -1 (a bad
clustering) to 1 (a good clustering). For example, if we have too few semantic
domains then the distance between words and their exemplar will generally be
large. But if we have too many semantic domains there will be only a small
distance between members of one category and the centroid of another. Both
scenarios will reduce the silhouette metric, albeit for different reasons. Thus,
while we define the magnitude of the number of clusters (in which we want
fewer syntactic than semantic categories), the grammar itself is searching across
specific clusterings.

Given that each cluster is defined by the exemplar that serves as its centroid,

Computational Construction Grammar 23

we name the clusters using several central examples to provide increased
transparency in the constructional representations that we end up with. We
also use cosine similarity to arrange the members of a cluster from central
(a small distance from the exemplar) to peripheral (a large distance from the
exemplar). From a usage-based perspective, the most frequent words will have
unique behaviours. Thus, because category formation is about determining
which words should be grouped together, we allow the most frequent words to
occupy their own unique clusters. Here a frequent word accounts for at least
1% of the tokens in the learning corpus; in the 10 million word evaluation, that
means a word must have 100k tokens to be given its own cluster. In the Project
Gutenberg corpus, this includes: it, i, he, was, that, in, a, to, and, of, and the. In
the semantic categories, these unique words remain unclustered because they
are expected to occur equally across all semantic domains.

#1 molasses #2: disdained #3: generally #4: combining
Central Examples

scones confounded presumably converting
cherries exasperated incidentally framing
pickles constrained ostensibly composing
spices detested consequently modelling

dumplings admonished legitimately mastering
Peripheral Examples

ice speaks timely organising
fungi heed publicly landing
tea obliged extremely including

drugs exclaims gladly following
zinc voted absolutely varying

Table 3 Examples of Syntactic Categories from Clustering cbow Embeddings

To summarize, we use k-medoids together with cosine distance to form
syntactic and semantic categories which are centered around a specific exemplar
and for which each individual member is quantified using its distance from that
exemplar. We control the magnitude of the number of categories for each type
of representation, but search for the best clustering using the silhouette measure.
The most frequent words, hypothesized to have their own unique distribution,

24 Elements in Cognitive Linguistics

are assigned to their own clusters.
We have already seen that, when focusing on the nearest neighbors for each

lexical item, each set of embeddings is relatively stable while still capturing
different types of distributional relationships. And we have also seen that there
is a significant correspondence between these distributional representations
and discrete introspective annotations. The question now is, what kind of
information do these larger categories capture after the clustering has taken
place? Starting with the syntactic categories learned from the Project Gutenberg
corpus, we see example clusters in Table 3, defined by their exemplar and then
divided into central examples (above) and peripheral examples (below).

These clusters are chosen in sequence, and show that each category is
centered around a specific part-of-speech: nouns in #47, verbs in #46, adverbs
in #44, and gerunds in #43. This explains the generally high agreement between
nearest neighbors and manual annotations that we saw previously. Rather than
high-level abstract syntactic categories, however, these categories reflect specific
meanings and usages. For example, the nouns in #47 are all things that are
pleasant to eat and the adverbs in #44 are centrally discourse markers. These
thus reflect sub-categories from the perspective of a phrase structure grammar,
categorizations which join form and usage together.

#1: explorations #2: assistant #3: intolerable #4: dancing
Central Examples

explorers administrator unendurable dance
expeditions manager insupportable romping
researches associate unbearable waltzing
discoveries superintendent endure masquerade
excursion director irksome flirting

Table 4 Examples of Semantic Categories from Clustering sg Embeddings

A selection of examples from the semantic categories is shown in Table 4, this
time with only central examples because the larger number of categories much
reduces the number of peripheral examples. Here we see how the skip-gram task
focuses on semantic domains: in #1, for example, we see items from different
syntactic categories that are a part of a single frame. In the same way, the
examples in #3 are mostly adjectives but a verb (endure) is included as part of
the same domain or frame. In this way, the semantic categories provide a larger

Computational Construction Grammar 25

number of related domains by which to define slots in constructions.
When we manually inspect the syntactic and semantic categories, there is a

clear meaning behind each cluster. But, given the possibility of instability in
the embeddings themselves, how arbitrary are these clusters? To measure this,
we undertake category formation on the same lexicon (from Project Gutenberg)
using two distinct sets of embeddings, trained from different shufflings of the
same corpus. We saw in Section 1.3 that these models are subject to a certain
amount of instability. Does this instability mean that the categories that result
from clustering are not reproducible? We measure the overlap between two
sets of clusterings using the Adjusted Mutual Information score, which ranges
from 0 (random clusterings) to 1 (complete agreement). In this set-up, we
observe a significant agreement of 0.66 (for syntactic categories from cbow
embeddings) and 0.58 (for semantic categories from sg embeddings). Thus,
while there remains a certain amount of instability in the grammar, overall there
is a significant relationship between independent clusterings.

A final way of contrasting these local vs non-local slot-constraints, is to view
the syntactic constraints as capturing syntagmatic relationships and the semantic
constraints as capturing paradigmatic relationships. Two examples are given
in Table 5, the verb “to flow” and the noun “criticism”. In the first case, the
syntactic category includes other verbs that would occupy the same position
as “flow”, while the semantic category includes other forms like “flowing” that
are morphologically related. In the same way, the syntactic category with
“criticism” includes other nouns which could be used in the same position while
the semantic category also includes different grammatical forms of the same
lemma, like “criticisms” or “critics”. While the categories cannot be defined
perfectly as syntagmatic vs paradigmatic, this distinction is nonetheless useful
for understanding analyzing them.

Syntagmatic Paradigmatic Syntagmatic Paradigmatic
to flow criticism

builds flows complaint criticisms
merge flowing annoyance critique
extract overflow skepticism critiques
search overflowing confirmation critics
feed meander argument constructive

Table 5 Examples of Syntagmatic (cbow) vs Paradigmatic (sg) Patterns (WK)

26 Elements in Cognitive Linguistics

Our previous section presented and evaluated two types of word embeddings
trained to represent syntactic and semantic relationships given the distributional
patterns observed in a corpus. For the purposes of defining slots and slot-
constraints, we must transform this network of pairwise relationships into
categories. This section has presented an approach to category formation which
centers each category around an exemplar and then arranges members of the
category given their distance from that exemplar. These categories contain
meaningful linguistic information and, while not perfectly stable, do show a
significant relationship between independent clusterings.

1.5 Attraction: From Categories to Constraints
The grammar has so far focused on a usage-based approach to category

formation, developing the basic ontology of representations required to capture
lexical, syntactic, and semantic constraints. These are the basic constructions in
the grammar. In this section we turn to the problem of attraction: how does a
slot within a construction use these categories to attract certain slot-fillers?

SEM: describes SYN: suppose SYN: embellishments
0.98 describing 0.92 pretend 0.94 adornments
0.98 illustrates 0.89 think 0.93 blandishments
0.98 relates 0.89 misunderstand 0.93 trappings
0.98 refers 0.88 believe 0.88 carvings
0.97 writes 0.88 expect 0.87 satire

Table 6 Members of Semantic (Left) and Syntactic (Right) Domains

First, how do we deal with out-of-vocabulary words (henceforth, oov)
which are not contained in the lexicon and thus were not used during category
formation? For example, the cluster evaluation above worked with 10 million
words from the Project Gutenberg corpus, with a frequency threshold of one part
per million. This led to a lexicon containing approximately 30k word-forms. By
oov we mean those word-forms which were not assigned to clusters and thus will
not be directly accessible for the purpose of forming or filling slot-constraints.
In the first case our approach is to use the embedding for an unseen word to
assign that oov word to the nearest medoid (defined using cosine similarity).

While previous work has relied on discrete and uniform slot-constraints, we

Computational Construction Grammar 27

define constraints using distance from exemplars: some members of a category
are better examples and thus are better fillers for a slot. We exemplify this idea
of proto-type attractions in slot-constraints using the category memberships
shown in Table 6, with a semantic cluster on the left (#684) and two syntactic
clusters on the right (#11 and #8). The central exemplar is shown in the header
while members of the cluster are listed together with their cosine similarity to
the center (with higher values reflecting a better example). Because there are
many more semantic clusters, each cluster is much smaller which means that
there are fewer distant members. With syntactic categories, however, there is a
range of members further from the proto-type.

(1.5a) [sem: 684 – lex:what – syn:he – syn:11 – syn:is – syn:a/an – syn:8]
(1.5b) “He describes what he pretends is an embellishment.”
(1.5c) “He writes what he believes is a satire.”

The potential construction in (1.5a) follows our previous notational conven-
tions but using constraints defined in reference to the clusters above. Recall
that very frequent words are assigned to their own clusters, as we see here with,
for example, he. The notation refers to individual clusters (i.e., sem:#684), but
computationally this is defined using the centroid or exemplar of that cluster:
the word embedding which represents the proto-type of that category. Thus,
the utterance in (1.5b) is a slightly better example of that potential construction
in the sense that its slot-fillers are closer to the constraint’s centroid. This idea
allows us to use oov words as fillers of slot-constraints using their distance to
the exemplar rather than their discrete membership in the category.

A further problem is to deal with oov words for which there is no embedding
in the first place.7 One advantage of the fastText character-based embeddings
is that they are based on sub-word n-grams. Thus, the embeddings for a
completely oov word judgements could be easily reconstructed given the sub-
word components of in-vocabulary words like judge and judged and judgement.
Given this reconstructed embedding, this word would then be able to satisfy
slot-constraints in the grammar.

We would expect that categories change as they are exposed to more usage:
as the lexicon grows, the network of relationships between individual words
grows denser and thus the categories become more precise. To model this,
we investigate syntactic (local) categories from the Project Gutenberg corpus,
with exposure ranging from 100k words to 10 million words. This is shown

7Because we trained the embeddings on a reference corpus of 2 billion words, many words
which are not in the lexicon will still have embeddings in the model.

28 Elements in Cognitive Linguistics

Exposure #1 #2 #3 #4

100k
Top determined prepared desired compelled

Bottom possible anxious order resolve

500k
Top determined permitted prepared compelled

Bottom unable proceeds begun vigilant

1 mil
Top determined permitted compelled prepared

Bottom willingness impossible intend refusal

2 mil
Top determined permitted compelled prepared

Bottom begun apt oblige urge

5 mil
Top determined permitted compelled allowed

Bottom apt hesitate oblige decide

10 mil
Top determined permitted compelled endeavoured

Bottom oblige began decide begin

Table 7 Changes in Category Formation Given Increased Exposure

in Table 7 using the verbal category whose exemplar is determined. The top
examples, all verbs at each level of exposure, express a meaning of the attitude
of an individual toward some event. An outlier verb, prepared, which is less
directly focused on attitude, slips out of the top set of examples as the network
grows more robust with increased exposure. The Bottom examples are those
on the periphery, furthest from the exemplar. Here there are several non-verb
examples (marked in italics). The number of non-verbs decreases as exposure
increases, however, with only verbs remaining once we reach 10 million words
of exposure. These examples show the way in which categories become more
precise with increased exposure, with the observed changes taking place mostly
in the periphery of the category.

1.6 Hierarchy: Relationships Between Slots
We have so far put forward a replicable model of category formation, based

on distribution, for the purpose of defining slot-constraints (basic constructions).
A first-order construction is a sequence of slot-constraints that is defined by both
the type of constraint (lex, syn, sem) and the filler (which has a greater or lesser

Computational Construction Grammar 29

attraction to that slot). But is there structure within a first-order construction?
We begin the representation of structure within constructions using a measure

of association. We previously used the normalized pmi to find lexical construc-
tions (phrases); the advantage of the pmi family of association measures is that
they provide a single value to measure the attraction between two words. In
this case, however, we need to distinguish between the directions of association
(left-to-right and right-to-left). We do this using the Δ𝑃 measure, developed
with a focus on language learning (Ellis, 2007) and previously used for modelling
the distribution of multi-word units in large corpora (Dunn, 2018c). The Δ𝑃

is particularly useful here because it allows for asymmetric associations: the
issue of relationships between slots in a construction is not so much association
strength on its own but rather the skew between direction-specific association.

outcome no outcome Totals
cue a b a + b

no cue c d c + d
Totals a + c b + d

Table 8 Variables for Calculating the Δ𝑃

The basic idea behind the Δ𝑃 is to view a given word as a cue and an adjacent
word as an outcome. For example, in the phrase “of course”, the left-to-right
association would view “of” as the cue and “course” as the outcome. As shown
in Table 8, the measure is calculated by first counting the frequency of each
cue with and without an outcome. Thus, the frequency of “of course” is 𝑎 (cue
and outcome together). The frequency of “of” on its own is 𝑏 (the cue without
the outcome). The frequency of “course” on its own is 𝑐 (the outcome without
the cue). And, finally, the variable 𝑑 accounts for the general corpus size (the
words which are neither cue nor outcome). The frequencies represented in the
table thus can be used to measure the conditioning of particular outcomes given
particular cues, originally situated within contingency learning (Ellis, 2007).

Δ𝑃 � 𝑃�𝑂𝑢𝑡𝑐𝑜𝑚𝑒¶𝐶𝑢𝑒� � 𝑃�𝑂𝑢𝑡𝑐𝑜𝑚𝑒¶𝑁𝑜𝐶𝑢𝑒� (1.5)

The Δ𝑃 is the conditional probability of the outcome given the cue adjusted
by the conditional probability of the outcome without the cue, as shown in
the equation above. This is a directional or assymetric measure of association
because the role of cue and outcome can be calculated in either direction, as

30 Elements in Cognitive Linguistics

shown below. In the left-to-right variant (Δ𝑃𝐿𝑅), the cue is the first word and
the outcome is the second word, quantified as shown in the equation below. In
the right-to-left variant (Δ𝑃𝑅𝐿), the cue is the second word and the outcome is
the first word. Taken together, these measures connect corpus frequencies with
contingency learning and provide direction-specific measures of association.

Δ𝑃𝐿𝑅 �
𝑎

𝑎 � 𝑐
�

𝑏

𝑏 � 𝑑
(1.6)

Δ𝑃𝑅𝐿 �
𝑎

𝑎 � 𝑏
�

𝑐

𝑐 � 𝑑
(1.7)

We include this association-based information about structure into the
notation used for constructions. If the association between two adjacent slot-
constraints is symmetric (i.e., there is no significant difference between the
direction-specific measures), we use the previous notation “–”. But if the
association is asymmetric we use “<” to indicate that the right-to-left variant
is stronger and “>” to indicate that the left-to-right variant is stronger. This
captures local dominance in the relationships between adjacent slot-constraints.

Equal Directions LR Dominant RL Dominant
[terror – stricken] [on > horseback] [connected < with]
[royal – academy] [had > elapsed] [kissed < her]

[standing – upright] [his > patron] [obliged < to]
[sudden – flood] [it > happens] [committee < on]

[northern – hemisphere] [a > dozen] [examine < it]
[wild – beasts] [have > climbed] [willing < to]
[six – ounces] [from > northwest] [series < of]

[second – mate] [by > jove] [buried < in]
[full – swing] [which > stretches] [belongs < to]

[get – rid] [an > eternity] [refer < to]

Table 9 Examples of Directional Differences in Association

The difference in direction of association is shown in Table 9 from 100k words
of the Project Gutenberg corpus. The table shows pairs of slot-constraints with
equal association in each direction, with a dominant left-to-right association,

Computational Construction Grammar 31

and with a dominant right-to-left association. In the first case, pairs with equal
association in each direction are phrases such as terror stricken or standing
upright in which both words have an equal standing. With a dominant left-to-
right association, however, we instead see pairs like on horseback or a dozen in
which the first word is quite common and thus occurs with many other pairs
while the second word is fairly restricted to this particular phrase. Similarly,
with a dominant right-to-left association we see pairs like obliged to and belongs
to in which the second word occurs after a large number of other items but the
first word is restricted to this particular combination.

While introspective linguistic analysis has focused on discrete relationships
between slots (such as case roles like agent or direct object), this approach
uses continuous distributional relationships instead. This notion of hierarchy
provides an analysis of structure within the construction. Here we show only
the association between lexical constraints, but of course the grammar itself
has access to both syntactic and semantic constraints as well and dominance
is indicated between each pair of constraints in a construction. While we have
conceptualized a construction as a sequence of slot-constraints, we could as
easily have drawn from dependency grammar and conceptualized a construction
as dependency relationships between slot-constraints, as hinted at here using
association. The expansion of computational CxG from sequence-based to
dependency-based representations remains a challenge for future work.

1.7 Computational vs Cognitive Representations
In this section we have focused on a usage-based computational representation

of constructions: the data-driven emergence of atomic slot-constraints (basic
constructions). We began with the lexicon itself, the core inventory of word-
forms available to the learner, using a measure of association (the npmi)
to find lexical constructions. We then focused on categories of words, using
distributional information in the form of word embeddings (both the continuous-
bag-of-words and the skip-gram variants). These embeddings situated the
vocabulary in a vector space, a network of relationships which we used to
build clusters and to provide central exemplars for each cluster. Finally, we
used association measures (the Δ𝑃) to consider relationships between slots
within a construction. Thus, our primitive representations are word-forms,
categories of words, and relations between contiguous slots in a construction.
What is the relationship between these computational representations and the
representations of actual learners?

The first fundamental difference between computational and cognitive repre-

32 Elements in Cognitive Linguistics

sentations is the means of exposure. For a human language learner, the input
consists of (i) the usage or production of others, (ii) observations of the external
physical and social context, and (iii) potentially a genetic pre-disposition of
some sort towards language. For a computational model of language learning,
however, the input consists of (i) the usage or production contained in a corpus
and (ii) the assumptions of the computational framework. For instance, previous
work in computational CxG assumed the universal part-of-speech tagset, so that
a learner would begin with a distinction between nouns and verbs (Dunn, 2022a).
Because it is notoriously difficult to untangle the influence of both the stimuli
and the language faculty in human language learning, our ability to experiment
with different starting assumptions in a computational framework provides an
important way to test the degree to which language is learnable from exposure
alone. In other words, if a computational model can adequately learn a grammar
from input, it follows that a human learner could do the same as well. The
challenge, though, is that the external physical and social experience of a human
learner is missing from a computational framework. Thus, in cases where a
computational model is inadequate, is it due to missing these experiences or is
it due to missing the genetic pre-dispositions of the language faculty?

The second fundamental difference is that computational representations (of
all varieties) are ultimately isomorphic rather than substantive in their semantics.
This isomorphism means that our representations should enter into all of the
same relationships as would a speaker’s cognitive representations. For example,
if speakers judge flower and plant to be more similar than flower and house, our
computational representations should mirror this similarity. Thus, our syntactic
and semantic representations, provide a network of pairwise relationships
between words. This is also true for knowledge-based approaches, which usually
depend on an ontology that manually specifies such relationships, albeit in a
discrete form (Nirenburg & Raskin, 2004). Beyond this network of relationships,
however, there is no substance behind computational representations that would
be similar to the idea of embodied experience that some cognitive linguists
have offered as a foundation for semantics (Lakoff & Johnson, 1999). While
the semantics of cognitive representations might be embedded in physical
experience, the semantics of any computational representations is purely a
matter of isomorphic relationships.

A third difference, perhaps less fundamental, has to do with the type of
usage that is observed. For the computational experiments here, we draw from
a number of registers as shown in Table 1. These are ultimately all written
registers, with differences in the situational parameters that we could use to
describe their context of production (Biber & Conrad, 2009). These different
situational parameters, in turn, lead to somewhat different structural patterns.

Computational Construction Grammar 33

The issue is that human learners are first exposed to spoken rather than written
usage. Although we can control for the amount of exposure (c.f., Section 3.2),
we have less control over the register of exposure.

These are the three main distinctions between computational and cognitive
representations within construction grammar: the means of exposure, the source
of semantics, and the register of exposure. These are the primary ways in
which a corpus-based computational experiment differs from an experiment
conducted on human participants. Given these differences, why should we rely
on a computational experiments at all? There are three primary advantages of a
computational approach to CxG: First, the scope of computational experiments
can mimic actual language learning in a way that laboratory experiments
cannot, in terms of (i) the number of participants observed, (ii) the number of
grammatical structures observed, and (iii) the number of languages and dialects
observed. Second, the exposure conditions of computational experiments can
precisely define how much and what sorts of input the learner has experienced
in a way that laboratory experiments could never practically achieve. Third, the
role of the language faculty (as opposed to exposure) is easier to demarcate in a
computational framework, as is the relationship between additional assumptions
and increased grammar quality.

A discovery-device grammar, which combines mechanisms of emergence
with the precise evaluation of grammar quality, has been viewed as the highest
form of linguistic theory (Goldsmith, 2015). Inspired by work in machine
learning, we conceptualize such a model of grammar as (i) a defined hypothesis
space of potential constructions, (ii) a search method or discovery procedure for
navigating these potential representations, and (iii) a loss function or evaluation
metric for guiding the search toward better representations. Much like the
linguistic experience of individual language learners, a corpus is always a
somewhat arbitrary collection of utterances. The question is, how do we ensure
robust generalizations when we observe only a limited sample of usage?

In computational terms, we use three main approaches to ensure robust
generalizations during the learning process. The first problem is that unobserved
structures (out-of-vocabulary) are difficult to model. The solution here is
to use character-based embeddings to estimate word vectors for such out-of-
vocabulary items and then leverage the proto-type structure of categories to
allow for out-of-vocabulary slot-fillers (c.f., in Section 1.5). The second problem
is that different corpora represent specific domains and the generalizations based
on those corpora decline in quality as we move further away from the original
domain. This is a problem of domain adaptation; recent work has made it
possible to measure such domain differences (Li & Dunn, 2022; Li, Dunn, &
Nini, 2022) with a focus on dialect and register. Our basic approach to domain

34 Elements in Cognitive Linguistics

adaption here is to implement smoothing, which removes probability mass from
observed items, thus leaving space for unobserved items (c.f., Section 2.1). The
third problem is that a learning algorithm is influenced by the order and the
spacing of specific observations; for example, a model might be biased towards
examples that were frequent early in its training period. We consider this in
the form of a hypothesis about forgetting constructions, in which periods of
learning are interspersed with periods of forgetting in order to establish more
robust generalizations (c.f., Section 3.1).

2 Learning Constructions

This second section presents a computational approach to learning construc-
tions. We want to know which constructions are entrenched given the evidence
of production from a particular corpus. The usage-based model of category for-
mation from Section 1 provides an emerging ontology of slot-constraints (basic
constructions). How do these constraints coalesce into first-order constructions?
This problem requires measuring properties of each potential construction,
such as its frequency and its association, in order to determine which potential
constructions are in fact productive. From a computational perspective, this
is a search problem and we must define the hypothesis space of potential
constructions before developing a method for exploring this hypothesis space.
From a usage-based perspective, this search problem models the mechanisms
by which constructions emerge from observed usage, the second component of
a discovery-device grammar.

How do we know when a particular pattern or chunk has become a construc-
tion? Here we have two related concepts: a chunk is a pattern or sequence
from a corpus and a construction is a grammatical description which repre-
sents the productive linguistic knowledge of a community of speaker-hearers.
Both chunks and constructions would be represented using the ontology of
slot-constraints developed in Section 1. And in both cases these structures are
specific to a corpus drawn from a community rather than to a language as a
whole. In other words, it only makes sense to talk about the entrechment of a
chunk or construction relative to some population for which it is entrenched.
The distinction between a chunk and a construction has to do with its status in
the grammar: a chunk is a potential construction while a construction proper is
one which is contained in the constructicon. Thus, the term chunk provides a
convenient way to refer to potential constructions which exist in the hypothesis
space for the grammar but not necessarily in the grammar itself.

An overview of this section is shown in Figure 10. We begin by exploring

Computational Construction Grammar 35

Figure 10 Learning a Grammar of Constructions
(Parsing and Evaluating Constructions)

corpus-based measures of entrenchment that evaluate whether a chunk is a
productive construction (Section 2.1). Given these measures, we approach the
problem of searching across sequences of potential slot-constraints to provide
an inventory of potential constructions (Section 2.2). We evaluate potential
grammars using the Minimum Description Length paradigm, which requires
both a measure of grammar complexity (Section 2.3) and a measure of the
grammar’s ability to describe a test corpus, both expressed as encoding size
(Section 2.4). This evaluation metric reflects the need to balance memory and
computation in usage-based grammar, finding the right mix between storing
irregular forms and assembling predictable forms. This metric is then used to
guide a grid-search across different frequency and association thresholds.

One of the on-going challenges for usage-based syntax is the projection
problem, in which the learner must first posit grammatical structure for an
utterance in order for that utterance to then count as meaningful exposure. We
consider this, as well as the general problem of parsing construction grammars,
in Section 2.5. In Section 2.6 we introduce a distinction between first-order and
second-order constructions in order to support a more precise description of the
constructicon: a second-order construction is one which has been formed
indirectly by merging two existing constructions together. Finally, as emerging

36 Elements in Cognitive Linguistics

structures become more complex, we face the problem of levels of abstraction,
with some chunks quite item-specific and others quite generalized. We present
an iterative approach to scaffolding structure during learning in Section 2.7, in
which the same discovery-device construction grammar is used to acquire first
lexical-only constructions, then syntactic-only constructions, and finally a full
constructicon which incorporates all three types of slot-constraints. Thus, this
section focuses on the mechanisms by which, given an emerging ontology of
slot-constraints, the grammar itself emerges from observed usage.

2.1 Measuring Entrenchment:Frequency, Association, and Smoothing
A chunk or potential construction is a sequence of these learned slot-

constraints which needs to be considered for possible inclusion in the grammar:
some chunks will become entrenched given continued usage but most will not.
The set of chunks which must be considered for inclusion in the grammar makes
up the hypothesis space for grammar learning.

To quantify this hypothesis space, we use 10 million words to find the number
of pairwise sequences once we include syntactic and semantic slot-constraints:
the news comments corpus (cm), the Twitter corpus (tw), the Wikipedia corpus
(wk), the European Parliament corpus (eu), and the Project Gutenberg corpus
(pg). This is shown in Table 10, where all sequences which occur at least twice
are included. These frequencies show us the sheer size of the hypothesis space
even when the size of a construction is constrained to just two slots: the totals
range from 1.99 (eu) to 3.30 million (tw and wk).

The most common sequences contain lexical constraints, starting with the
largest category (lex – lex). Following this, semantic sequences are more
common than syntactic sequences. This order is caused by our category
formation processes: there are approximately 30k words in the lexicon, 2.5k
semantic categories, and 250 syntactic categories. More categories leads to
both more sequence types and a lower per-type frequency. This is what we want
in order to capture different levels of abstraction within constructions.

The problem, then, is to filter this set of chunks in order to find those
which are more likely to be entrenched. In the first case, any particular chunk
must be sufficiently frequent before it can be considered entrenched. This
threshold-based approach only considers frequency as a cutting mechanism to
remove certain items from consideration. The same frequency threshold is used
as when forming the lexicon: one part per million. The impact of this threshold
is shown in the bottom portion of Table 10.

Computational Construction Grammar 37

Before Frequency Threshold
NC TW WK EU PG

lex – lex 581,754 619,131 578,911 432,655 586,384
sem – lex 410,744 483,873 469,016 295,188 412,216
lex – sem 409,003 476,917 463,346 293,946 413,000
lex – syn 375,267 441,679 427,430 261,021 392,049
syn – lex 372,513 446,238 433,497 254,330 374,877
sem – sem 224,496 306,357 277,778 163,694 212,601
sem – syn 181,979 234,618 192,723 126,394 178,093
syn – sem 181,252 231,317 193,852 124,395 175,684
syn – syn 57,497 64,194 57,607 46,172 56,459

Total 2,794,505 3,304,324 3,094,160 1,997,795 2,801,363

After Frequency Threshold
lex – lex 97,255 89,138 87,100 87,923 95,280
sem – lex 85,053 83,680 85,699 71,797 84,632
lex – sem 84,905 83,724 84,109 71,551 83,130
lex – syn 78,268 79,291 79,024 67,574 76,761
syn – lex 79,943 81,218 82,045 67,360 76,245
sem – sem 58,532 64,807 67,734 48,068 58,224
sem – syn 55,292 66,091 63,563 43,353 54,140
syn – sem 55,266 66,924 63,639 42,572 51,792
syn – syn 35,548 43,895 37,170 26,782 35,317

Total 630,062 658,768 650,083 526,980 615,521

Table 10 Number of Pairwise Sequences by Constraint Type and Corpus

The number of sequences is substantially lower, ranging now from 526k
(eu) to 658k (tw). Thus, frequency alone can be used to reduce the hypothesis
space. A large number of chunks remain, however. Thus, we also draw on an
association measure, the direction-specific Δ𝑃 that was presented in Section
1.6. Our goal is not only to calculate association for a given corpus but also to
generalize entrenchment across a particular population of speaker-hearers. This

38 Elements in Cognitive Linguistics

generalization problem is well-explored within natural language processing in
the form of probability smoothing. Highly frequent items or sequences tend
to generalize well across corpora; the difficulty is working with rare or even
unseen items that do not appear in the training corpus. Just because a particular
sequence has not been observed does not mean that sequence is not possible.

The essential problem which smoothing is designed to address is the presence
of out-of-vocabulary items whose frequencies cannot be captured using training
corpora. While the embeddings used for category formation can be used to
assign out-of-vocabulary words to existing word classes, sequences which are
unattested in the training data remain difficult to generalize. One effective type
of smoothing is absolute discounting, which reduces the frequencies of observed
sequences in order to leave probability mass available for new unseen sequences.
A further refinement, called Kneser-Ney discounting (Kneser & Ney, 1995),
quantifies the continuation probability for each sequence: this is the idea that
some items occur in diverse contexts (like “of X”) while other items occur in a
limited number of contexts (like “X course”). This type of discounting is not
necessary with the Δ𝑃 because this measure already controls for the presence
of the cue without the outcome.

𝑓 𝑟𝑒𝑞�𝑝𝑎𝑖𝑟� � 𝑓 𝑟𝑒𝑞�𝑝𝑎𝑖𝑟� � 𝛿

outcome no outcome
cue 𝑎 � 𝑓 𝑟𝑒𝑞�𝑝𝑎𝑖𝑟� 𝑏 � 𝑓 𝑟𝑒𝑞�𝑖𝑡𝑒𝑚1� � 𝑎

no cue 𝑐 � 𝑓 𝑟𝑒𝑞�𝑖𝑡𝑒𝑚2� � 𝑎 𝑑 � 𝑡𝑜𝑡𝑎𝑙 � 𝑎 � 𝑏 � 𝑐

Table 11 Variables for Calculating the Δ𝑃 With Smoothing

Borrowing this idea from statistical language models, we add smoothing
to the Δ𝑃 in order to increase its ability to generalize across corpora. We
calculate the rate of discounting by dividing the training corpus into two parts,
calculating the frequency of all pairwise sequences in the first part and then
finding the difference between the first part and the second. We calculate a
discounting rate for each of the nine sequence types shown above (i.e., lex-
lex). Following previous work, we also calculate a unique discounting rate
for individual frequency strata (Chen & Goodman, 1999). Thus, the rate of
smoothing is empirically fitted to both the type of sequence and its frequency,
so that less frequent sequences can receive a higher degree of smoothing. Table
11 shows how the smoothing adjusts the frequencies used to calculate the Δ𝑃.
The frequency of the sequence in question is adjusted by the discount rate (c.f.,

Computational Construction Grammar 39

Table 12) and this then influences the other frequencies accordingly.

PG WK
Type F=1 F=2 F=3 F>3 F=1 F=2 F=3 F>3

lex – lex 0.64 0.73 0.78 0.83 0.66 0.78 0.83 0.94
lex – syn 0.47 0.63 0.71 0.74 0.47 0.66 0.73 0.88
lex – sem 0.56 0.64 0.68 0.72 0.57 0.72 0.76 0.87
syn – syn 0.42 0.25 0.16 0.08 0.50 0.29 0.21 0.32
syn – lex 0.48 0.64 0.70 0.71 0.46 0.64 0.71 0.88
syn – sem 0.20 0.37 0.47 0.53 0.12 0.27 0.36 0.66
sem – sem 0.52 0.60 0.58 0.50 0.44 0.60 0.61 0.76
sem – syn 0.18 0.34 0.41 0.54 0.12 0.29 0.34 0.66
sem – lex 0.57 0.63 0.68 0.72 0.57 0.70 0.76 0.88

Table 12 Discounting values, 𝛿, by Sequence Type and Frequency Strata. This
indicates the magnitude of frequency smoothing at different levels.

The range of discounting values is shown in Table 12 across sequence type
and frequency strata for two corpora, Project Gutenberg and Wikipedia, each
with two sub-sets of 5 million words each. The importance of calculating the
discount rate separately for each type and frequency strata is shown by the range
of values: some have a very low discount rate (such as sem – syn at 0.18 and
0.12), which means that the difference in frequencies for this type of sequence
across different corpora is itself quite small. This is not a surprising finding
because these more general constraint types are less dependent on specific
utterances. But more item-specific sequences (such as lex – lex) have a much
higher discount rate, closer to 1. We have thus tailored the smoothing rate to
the specific frequency patterns of each sequence type.

We evaluate the degree to which this smoothing influences theΔ𝑃 in Table 13,
which shows the Pearson correlation between the smoothed and raw association
for the Wikipedia corpus, divided by sequence type and frequency strata; to
save space, only select semantic constraints are shown. All correlations are
significant at the 𝑝 $ 0.001 level. We expect that more frequent sequences
are less influenced by smoothing, because the discount rate is small relative to
the overall frequency. But less frequent sequences will be heavily influenced
because the discount rate will constitute a large portion of their overall frequency.

40 Elements in Cognitive Linguistics

In most cases, more frequent categories have a higher correlation between
smoothed and raw association values. For example, in lex – sem sequences in
the left-to-right direction, there is a small but significant correlation of 0.34 in the
low frequency band that increases consistently to 0.77 in the highest frequency
band. This means that the impact of smoothing is highest on those items which
are observed only a few times. The impact of smoothing on semantic constraints
is larger in general than on lexical constraints. This frequency-based effect of
smoothing is precisely what we expect since highly frequent items will provide
a better initial estimate of association than rare items.

Freq Type N r(Δ𝑃𝐿𝑅) r(Δ𝑃𝑅𝐿)
<5 lex – sem 148,255 0.34 0.98

5-10 lex – sem 62,656 0.56 0.99
10-100 lex – sem 71,915 0.57 0.99
100-200 lex – sem 5,076 0.70 0.99

>200 lex – sem 4,694 0.77 0.99
<5 sem – lex 149,306 0.97 0.47

5-10 sem – lex 64,754 0.99 0.64
10-100 sem – lex 73,712 1.00 0.74
100-200 sem – lex 5,011 0.99 0.87

>200 sem – lex 4,350 0.98 0.89
<5 sem – sem 82,664 0.36 0.40

5-10 sem – sem 38,173 0.55 0.61
10-100 sem – sem 53,878 0.52 0.62
100-200 sem – sem 6,108 0.46 0.74

>200 sem – sem 8,114 0.54 0.64

Table 13 Correlation Between Smoothed and Raw Δ𝑃

by Sequence Type and Frequency Strata (Wikipedia Corpus). This indicates the
overall impact of frequency smoothing on association values.

This section has focused on reducing and exploring the hypothesis space of
chunks – potential constructions that need to be considered while learning a
grammar. We started with a measure of association, the Δ𝑃, because sequences
of slot-constraints which are not expected to follow one another are also not likely

Computational Construction Grammar 41

to be entrenched. The number of chunks remains high, however, so we use a
frequency threshold to further limit the number of sequences. Lexical constraints
are more influenced by a frequency threshold and syntactic constraints are less
influenced. Finally, we introduced smoothing for the Δ𝑃 in order to increase our
ability to generalize away from the training corpus. The basic idea behind our
discount-based smoothing is that less frequent sequences will be subject to more
arbitrary variation and thus should be subject to a higher degree of smoothing.

2.2 Searching for Chunks: Beyond Templates
Given a large hypothesis space of these chunks (cf, Table 10), we use a

beam search parsing strategy to determine which of them have been sufficiently
entrenched to be treated as constructions proper. An alternate approach to this
problem, taken in previous work, is to base the search around fixed templates
(Dunn, 2017; Perek & Patten, 2019), where the templates or patterns are defined
by hand. There are three weaknesses with relying on manually-defined templates:
First, templates rely on fixed syntactic categories (like nouns and verbs), even
though such basic categories should themselves be emerging structures. Second,
the design of these templates is language-specific and introduces assumed
linguistic knowledge. Third, one of our goals is to determine the influence of
increased exposure on increasingly complex constructions, a phenomenon that
would be disguised by relying on pre-defined templates. For these reasons we
develop an approach that relies on a beam search across alternate pathways
through slot-constraints (Dunn, 2019a).

The underlying assumption is that every utterance has been produced or
licensed by an entrenched construction. That entrenched construction could
range from an item-specific lexical phrase (the least abstract) to a fully syntactic
phrase structure rule (the most abstract). The challenge is to find the chunk –
the specific sequence of slot-constraints – which best captures the linguistic
properties of that sequence across the corpus.

Consider the examples in Table 14, which are shown using lexical, syntactic,
and semantic constraints (these are based on introspection simply for the sake
of exposition and are not a result of computational CxG). The phenomenon of
interest here is the difference between one type of slot-constraint and another. All
four utterances could be described using a variant of the ditransitive construction
in (2.2a). However, the idiomatic final example give me a break could also
be described using the item-specific construction in (2.2b). The challenge for
the chunking algorithm is to allow weak links within a construction without
pre-defining a set of possible constructional shapes. In other words, we need

42 Elements in Cognitive Linguistics

to ensure that both the generalized construction in (2.2a) and the item-specific
construction in (2.2b) are allowed to emerge.

(2.2a) [transfer – prn – det – noun]
(2.2b) [transfer – prn – det – “break”]

Slot 1 Slot 2 Slot 3 Slot 4
lex send me a receipt
syn verb prn det noun
sem <transfer> <speaker> <none> <financial>
lex email me a copy
syn verb prn det noun
sem <transfer> <speaker> <none> <abstract>
lex give me a call
syn verb prn det noun
sem <transfer> <speaker> <none> <communicate>
lex give me a break
syn verb prn det noun
sem <transfer> <speaker> <none> <leisure>

Table 14 Potential Chunks for Related Utterances. This shows how very similar
utterances could be used to learn different constructional representations.

The beam search algorithm is defined in Table 15. The basic idea is to thread
a highly associated path through the slot-constraints of potential constructions
in order to find those which may be entrenched. These chunks are evaluated
using directional pairwise association, so that the optimal next slot-constraint
will be associated with the current slot-constraint. Such a measure has a local
bias because its immediate memory is limited to the current transition or choice
of next slot-constraint (not unlike a bigram language model).

Thus, the beam search allows many candidates to be found from the same
starting position (i.e., slot) and then undertakes a global evaluation of competing
candidates. The sequence with the highest association (including both the
left-to-right and the right-to-left directions) is retained. This references the total

Computational Construction Grammar 43

association of a particular sequence, which is the accumulated sum of each
pairwise association within the sequence.

Variables
𝑛𝑜𝑑𝑒 = slot-constraint in the input corpus
𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑁𝑜𝑑𝑒 = start of potential construction
𝑠𝑡𝑎𝑡𝑒 = type of slot-constraint for node
𝑝𝑎𝑡ℎ = route from root to successor states
�𝑐� = list of immediate successor states
𝑐𝑖 , 𝑐𝑖�1 = transition to successor constraint
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑡𝑎𝑐𝑘 = plausible constructions
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 = maximize<�Δ𝑃𝐿𝑅 � Δ𝑃𝑅𝐿� for 𝑐𝑖 , 𝑐𝑖�1 in 𝑝𝑎𝑡ℎ

Main Loop
1 for each possible startingNode in line:
2 RecursiveSearch(path = startingNode)
3 evaluate candidateStack
4 horizontal pruning (remove nested chunks)
5 frequency pruning (remove infrequent chunks)

Recursive Function
6 RecursiveSearch(path):
7 for 𝑐𝑖 , 𝑐𝑖�1 in �𝑐� from path:
8 if max(Δ𝑃𝐿𝑅,Δ𝑃𝑅𝐿) of 𝑐𝑖 , 𝑐𝑖�1 % threshold:
9 add 𝑐𝑖�1 to path
10 RecursiveSearch(path)
11 else if path is >= 2 and <= 9:
12 add to candidateStack

Table 15 Beam Search Algorithm for Chunk Selection

The use of total association is a way to prefer longer constructions without
explicitly coding such a preference: longer constructions will have more slot-
constraints and thus have more opportunity to accumulate association across
pairs of constraints. Chunks must contain between two and nine slots chosen

44 Elements in Cognitive Linguistics

because of known memory constraints on sequence chunking (Miller, 1956).
Low and negative association values indicate that a particular item is repelled
from a position in the chunk; thus, while longer sequences may contain a slot
with low association it is quite unlikely that they would contain a repelled slot
with negative association.

For each sentence in the input, the global evaluation compares the set of
candidates from each starting node, taking the one which maximizes total
association. Because a highly-associated sequence, with differing starting nodes,
would lead to multiple partially aligned variants, a horizontal pruning algorithm
is used to remove those chunks which are wholly contained within another
chunk. A final pruning stage parses each of the candidates in the corpus and
evaluates them against a frequency threshold. This leads to two parameters in
the algorithm: the pairwise association threshold for continuing a particular line
of search and a corpus-wide frequency threshold for discarding rare chunks.

NC WK TW
Δ𝑃 Freq Δ𝑃 Freq Δ𝑃 Freq

Δ𝑃 � 0.05 42,879 9,439 47,022 12,265 30,811 7,086
Δ𝑃 � 0.10 18,541 5,204 26,822 8,311 12,348 3,757
Δ𝑃 � 0.15 10,446 3,361 14,861 5,530 5,791 2,213
Δ𝑃 � 0.20 5,869 2,194 8,323 3,761 3,097 1,417
Δ𝑃 � 0.25 3,569 1,508 3,585 2,176 1,750 932
Δ𝑃 � 0.30 2,228 1,075 2,333 1,549 1,042 627
Δ𝑃 � 0.35 1,494 803 1,733 1,213 705 474

Table 16 Size of Candidate Space by Δ𝑃 Threshold and Frequency Threshold.
The candidate space is the number of potential constructions observed.

The size of the hypothesis space extracted by this algorithm is shown in Table
16 for the news comments corpus (cm), the Wikipedia corpus (wk), and the
Twitter corpus (tw) at a size of 1 million words. The final frequency threshold
is fixed at 5 parts per million and the Δ𝑃 threshold ranges from 0.05 to 0.35.
Higher values lead to fewer but more entrenched chunks. It is clear that these
two thresholds have a significant impact on the extraction algorithm, essentially
tuning the relative size of the hypothesis space. The question, then, is how to
determine those thresholds in a reasonable manner. To answer this question,
we need a measure of how complex each potential grammar is and how well it

Computational Construction Grammar 45

describes a test corpus, the problems addressed in the next two sections. As
shown in Figure 10, we use a grid search across thresholds (with Δ𝑃 values
ranging from 0.05 to 0.40), choosing the exact threshold empirically against
the training corpus. In order to do this, however, we first need to develop the
Minimum Description Length metric for evaluating grammars.

2.3 Grammar Complexity: Storage vs Computation
Having found chunks in a corpus of usage, the next challenge is to determine

which have become entrenched as constructions. We have also seen that the Δ𝑃
threshold and the frequency threshold chosen for the beam search algorithm
have significant impacts on the size of the grammar. This means that we also
need to avoid arbitrarily selecting a threshold, so that the downstream properties
of the grammar depend on arbitrary choices in the model. For these reasons
we use the Minimum Description Length paradigm (mdl: Grünwald 2007) to
provide a metric of grammar quality that balances the need for both memory
(storing potentially redundant item-specific constructions) and computation
(reassembling more abstract constructions as needed).

(2.3a) [syn: DET – syn: ADJ – syn: N]
(2.3b) [syn: DET – syn: ADJ – sem: <idea>]
(2.3c) [syn: DET – lex: “broken” – lex: “heart”]

From a usage-based perspective, any sequence in the corpus could be
stored in the grammar, where the term grammar is ambiguous between a
computational model and the linguistic competence of a community of speaker-
hearers. Consider the constructions in (2.3a) through (2.3c) which vary in their
level of abstractness. In (2.3a) a phrase structure rule is created by relying on
purely syntactic constraints. In (2.3b) a semantic constraint restricts this to
nouns from a particular semantic frame. And, finally, the lexical constraints
in (2.3c) create an item-specific construction, in essence a collocation. These
constructions are redundant in the sense that a phrase like “a broken heart”
would be described or licensed by all three constructions. Given the linguistic
behaviour observed in a corpus, however, we might well hypothesize that all three
constructions are simultaneously entrenched in the grammar of the community
being represented. On the one extreme, a grammar of only phrase structure
rules would poorly describe the usage in the corpus by ignoring irregular and
item-specific behaviours. On the other extreme, a grammar which stores each
phrase would make poor generalizations and, failing to make generalizations,

46 Elements in Cognitive Linguistics

would provide a poor description of the corpus. The challenge here is to balance
memory and computation in the grammar.

The basic idea in mdl is to quantify both (i) the complexity of the grammar and
(ii) the fit between the grammar and a corpus. The complexity of the grammar
is used to represent the cost of storage. The fit between the grammar and a test
corpus is used to represent the computational gain of storage. Thus, storing
an item-specific construction is worthwhile when that construction improves
our ability to describe the corpus. An alternate way of viewing this problem
of what makes a construction worth learning has to do with idiosyncracy: any
construction which is idiosyncratic or in some way unique in form or meaning
must be stored (Goldberg, 2006). Thus, in (2.3c) the phrase “broken heart” is
not compositional; because the properties of (2.3c) cannot be predicted given
the properties of (2.3b) or (2.3a), it must be stored on its own.

𝑀𝐷𝐿 � min �𝐿1�g� � 𝐿2�d¶g�� (2.1)

The competing demands of grammar complexity (storage or 𝐿1) and descrip-
tive adequacy (fit or 𝐿2) is shown in Equation 2.1. The mdl paradigm aims
to minimize the sum of these two terms, so that increased complexity in the
grammar is only justified to the extent that it provides a better description of
the data. A discovery-device grammar is in part a search problem, with the
learner evaluating different chunks. Each grammar in this hypothesis space
is evaluated using mdl and the best grammar is the one with the lowest mdl
term. For example, this approach has been used in morphology to determine
the best segmentations of words and morphs (Goldsmith, 2001, 2006; Kohonen,
Virpioja, & Lagus, 2010).

𝐿𝐶�𝑋𝑛� � 𝑙𝑜𝑔2𝑃�𝑋𝑛� (2.2)

In order to implement mdl, however, we must quantify both 𝐿1 and 𝐿2 (c.f.,
Dunn 2018b). This is done using the concept of encoding size drawn from
information theory. A finding from information theory and mdl is that the
optimum encoding size is equivalent to the negative log of the probability of an
item. Here we use bits for measuring encoding size, so that the log is calculated
with base two. In practical terms, this means that more probable (hence more
common) items will have a smaller encoding size. Considering a simple lexical
model, if a word like “the” occurs 50k times in a corpus of a million words, its
probability would be 50, 000©1, 000, 000 � 0.05, thus having an encoding size
of 4.32. But if a word like “prism” occurs only twice in the same corpus, its
probability would be 2©1, 000, 000 � 0.000002, thus having an encoding size

Computational Construction Grammar 47

of 18.93. Thus, using bits as a measure of encoding and using frequency to
calculate probability means that more frequent items have a lower encoding cost
which makes them more likely to be included in the grammar.

The remainder of this section considers the complexity of the grammar (its
encoding size or 𝐿1). The encoding of a corpus given a grammar (its fit or
𝐿2) is considered in the next section. We define a construction as a sequence
of slot-constraints, allowing for lexical and syntactic and semantic constraints
in each slot. In order to encode each slot, we first need to encode the type of
constraint; assuming that all three constraint types are equally likely, the first
portion of the encoding cost for a slot is thus 1©3 � 0.333 or 1.58 bits.

For lexical constraints, word frequency is used to calculate encoding cost. As
above, “the” costs 4.32 bits because it is quite frequent while “prism” costs 18.93
bits because it is infrequent. The total cost is then 4.32 � 1.58 � 5.90 for “the”
and 18.93 � 1.58 � 20.51 for “prism”. For syntactic and semantic constraints,
we have learned categories or word classes that include many lexical items
within them. To calculate encoding size for categories we take the probability
of that category, based on the total sum of all the words in the category. Thus, if
a category like <transfer> contained words with a total frequency of 10k in the
corpus, the encoding size would be 10, 000©1, 000, 000 � 0.01 or 6.64 bits.

Figure 11 Encoding Constructions for Calculating 𝐿1 Encoding

Larger categories will contain more words and thus will be more probable.
In other words, larger categories will have a lower encoding cost and be more
likely to be included in the grammar. In this way, the average encoding size

48 Elements in Cognitive Linguistics

will be highest for lexical constraints (the most item-specific) and lowest for
syntactic constraints (the most general) as a function of the probability of each
individual member of these categories. Rather than directly define the cost of
different constraint types, this follows directly from the size and probability of
each of these categories. This process is shown in Figure 11 for the construction
that licenses a phrase like “reminding me of chocolate”. The encoding for
each construction is the sum of slot-constraint costs, here 33.29 bits. The most
expensive slot is the one with a lexical constraint.

The complexity of the grammar is the total bits required to encode its
constructions. In the same way, the complexity of a construction is the total bits
required to encode its slot constraints, as described above. On average, lexical
constraints will cost more and syntactic constraints will cost less. The cost of
any given constraint and constraint-type depends on the corpus of usage that is
observed during training. This is shown in Table 17, which provides examples
of slots costs from the news comments corpus for each of the three constraint
types. Low-cost items are at the top, medium-cost items in the middle, and
high-cost items at the bottom of the table.

Lexical Syntactic Semantic
Average 17.9 Average 4.7 Average 9.5
the 5.7 sees-realizes 2.1 think-know 2.4
to 6.6 want-need 2.4 people-folks 3.3
and 6.7 bring-carry 2.7 need-want 3.7
believe 12.0 retained-confined 4.4 loose-tied 7.8
political 12.0 france-poland 4.4 boiling-boil 7.9
state 12.0 cringing-taunting 4.5 gain-gained 8.0
dust 17.4 moron-buffoon 6.9 sesame-peanuts 13.9
engineering 17.1 chickens-rabbits 7.1 antitrust-litigation 13.9
fossil fuel 17.1 chuckle-sneer 7.0 sync-setup 13.9

Table 17 Examples of Encoding Cost by Slot-Type (nc)

The table shows how probability-based encoding implicitly favors more
generalized constructions. The average cost of lexical items is 17.99 bits, much
higher than the 4.76 bits for syntactic constraints or the 9.53 bits for semantic
constraints. Within each category, however, there is still a range of encoding

Computational Construction Grammar 49

costs. Very common words like “the” are rather inexpensive at 5.79 while less
common syntactic categories like <chickens-rabbits> are more expensive at 7.10.
Semantic categories have the broadest range, with the common category <think-
know> costing only 2.49 while the uncommon category <antitrust-litigation>
costs 13.91, more than many lexical constraints. These examples show how
encoding cost leverages the observed probability of slot-constraints to encourage
more entrenched constructions. The grammar is able to use less common basic
categories as slot-constraints, but the cost of doing so is higher.

This section has presented a usage-based approach to calculating the com-
plexity or encoding cost of a grammar by drawing on Minimum Description
Length and information theory. The basic idea is that some constraints cost
more to encode (thus contributing more to the complexity of the grammar) and
that encoding cost is directly dependent on probability. The consequence of
using mdl is that more item-specific constraints (such as lexical slots) will cost
more and thus will be less likely to be included in the grammar. In other words,
any construction can be learned but not all constructions are worth learning.

2.4 Grammar Fit: Probability and Encoding
We are developing a metric to determine the quality of a learned grammar.

So far we have considered the 𝐿1 term from Minimum Description Length, the
cost of the grammar. The other essential component is the cost of encoding
the data given the grammar. Much like perplexity for evaluating language
models, this 𝐿2 term measures the fit between the grammar and the data: how
probable does the grammar consider the corpus to be? For instance, if the
grammar assigns a high encoding size to a construction which ends up being
quite frequent in the test corpus, the result will be a high 𝐿2 term. This section
considers how we calculate the fit between a grammar and a corpus, using bits
to measure encoding size which, in turn, is derived from probabilities derived
from frequencies.

Imagine that we have a grammar on hand: a set of constructions together
with an empirical frequency-based encoding cost for each one. And imagine
that we also have a test corpus on which to evaluate the grammar. We progress
through the corpus word by word and look for the constructions in the grammar.
As discussed further in Section 2.5, any sequence in the corpus which satisfies
the constraints specified by a construction counts as an example or instance
of that construction (a token). Thus, each time we encounter a token of a
construction, we encode the corpus using a pointer to the construction in the
grammar. Because constructions are potentially overlapping, for example (2.3a)

50 Elements in Cognitive Linguistics

through (2.3c) each with a different level of abstraction, a sequence in the corpus
may be encoded using multiple pointers to different constructions.

𝐿2 �= 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐶𝑜𝑠𝑡𝑠 �= 𝑟𝑒𝑔𝑟𝑒𝑡𝐶𝑜𝑠𝑡𝑠 (2.3)

We thus have two challenges: first, to calculate the pointer cost for each
construction and, second, to calculate the regret or error in the model: parts
of the corpus which are covered by no construction in the grammar. Using
the test corpus, we find the frequency of each construction. The probability
of each construction is then calculated as its share of the total frequency of all
constructions. Thus, construction probability is relative to a specific grammar
and training corpus. If a specific grammar is too small (for instance, missing
many important constructions), these false negatives will inflate the probability
of lesser constructions, thus altering their encoding size and providing worse
generalizations to new corpora. The total 𝐿2 measure is the sum of the bits used
to encode pointers to the constructions in the grammar, where the encoding
size of each pointer is calculated using probabilities from the training corpus,
together with the sum of the regret or error in the model.

Figure 12 Encoding Pointers and Errors for Calculating 𝐿2 Encoding

For any given grammar and test corpus, some parts of the corpus will not
be covered or licensed or described by a construction in the grammar. This is
captured in the regret portion of the 𝐿2 term. For each word that is not encoded,
we add it to a separate regret grammar. Because each item in this regret grammar
is encoded separately and because we assume no frequency information, the

Computational Construction Grammar 51

probability of each item is 1©𝑡𝑜𝑡𝑎𝑙𝑛. Thus, if there are 100 items in the regret
grammar, the cost of each is 1©100 � 0.01 for an individual encoding size
of 6.64 (664 in total once we sum them). But if there are 1,000 items in the
regret grammar, the cost of each is 1©1000 � 0.001 for an individual encoding
size of 9.96 (9,960 in total once we sum them). Thus, a set of more errors
also costs more individually. This cost is then doubled, once for encoding in
the temporary grammar and once for encoding the pointer itself. The basic
idea behind this regret calculation, then, is to penalize grammars which are
inadequate to describe the test corpus: the price of false negative errors is high.

This process is shown in Figure 12, with pointer costs on the left and regret
costs on the right. The cost of encoding a given corpus is the frequency of each
construction multiplied by its pointer cost (its cost of usage), summed across the
entire grammar. The cost of regret is the probability of a false negative error (a
missing construction), with more errors leading to a higher cost per error. This
cost is multiplied by the number of errors and then doubled, to account for both
the pointer cost and the temporary encoding cost.

Putting the mdl metric back into context, the beam search algorithm described
in Section 2.2 extracts a potential grammar from the hypothesis space. This
algorithm has two thresholds: a Δ𝑃 threshold for adjacent slot-constraints
and a frequency threshold for overall chunk frequencies. This mdl metric
is used to evaluate a grid-search across these two thresholds in order to find
those parameters which provide the best mix of memory and computation for a
particular corpus. The best grammar within this search space is the one which
minimizes the sum of the 𝐿1 and 𝐿2 terms.

From a usage-based perspective, the types of constructions identified in
this way will depend on the size of the training corpus. In other words, larger
corpora will require more bits to encode in the same way that larger or more
complex grammars will require more bits. Thus, larger corpora will support
larger and more complex grammars. Thus, we expect that grammar size will
increase as the amount of training data increases. And, further, we expect that
the characteristics of constructions will change as the amount of training data
increases; this is investigated further in Section 3.

We show example chunks in Table 18, together with their encoding cost,
their pointer cost, and their total frequency in the test corpus. For each example,
the constructional representation is displayed first; the left column provides an
example of that construction (both from Wikipedia), and the following columns
provide the frequency, pointer cost, and encoding cost.

At the top there is a simple syntactic construction with only two slots. This
construction is quite frequent so that its pointer cost is low (6.96 bits). Because
there are only two slots and both of these are defined using the less expensive

52 Elements in Cognitive Linguistics

Example Freq Pointer Encoding
1 [syn:68 he-who > syn:219 would-could]

“he should” 5,797 6.96 0.66

2 [sem:427 only > syn:0 contingent-establishment]
“the country” 2,546 8.15 3.99

3 [lex: “it” – syn:47 sees-realizes]
“it reminds” 1,836 8.62 10.26

4 [syn:68 he-who > syn:30 want-need < sem:10 then]
“something needs to” 932 9.60 2.72

5 [lex: “maybe” < syn:68 actually-always > lex: “need” < lex: “to”]
“maybe they need to” 3 17.88 29.91

6 [sem:53 goes-comes < sem:10 then-once > syn:10 placate-deprive]
“happens to remove” 4 17.46 10.63

7 [lex: “given” < sem:427 only > lex: “chance” < sem:10 then]
“given the chance to” 4 17.46 29.47

8 [lex: “a” > lex: “fraction” < lex: “of” < sem:427 > lex: “price”]
“a fraction of the price” 3 17.88 46.77

Table 18 Examples of Both Pointer Cost and Encoding Cost for Representative
Constructions

syntactic constraints, the encoding cost of the construction (its contribution to
grammar complexity) is only 0.66. This can be contrasted with the longer and
less frequent chunk in the fourth row, with the example “something needs to”.
This chunk is less frequent as well as more complex, with a pointer cost of 9.60
bits and an encoding cost of 2.72 bits.

The center examples contain a mix of slot constraints: for example, the
fifth row with the example “happens to remove” contains both semantic and
syntactic constraints. This chunk is relatively infrequent and contains more
costly slot-constraints, so that its pointer cost is higher (17.46) and its encoding
cost is slightly higher as well (10.63). In the final construction, with the example
“a fraction of the price”, we see an item-specific lexical chunk. This chunk has a

Computational Construction Grammar 53

similar frequency as the previous construction, so that there is a similar pointer
cost of 17.88 bits. However, lexical constraints are more costly and this chunk
contributes a very high 46.77 bits to grammar complexity. These examples show
the application of the mdl metric to actual chunks derived from Wikipedia.

This section has considered the problem of calculating the fit between a
grammar and a corpus, including both true positive attestations (pointer costs)
and false negative errors (regret costs). As before, frequency in the training
corpus is used to predict costs in the grammar. The basic idea behind this model
is that, in usage-based grammar, any construction could be learned but not all
constructions are equally worth learning. Here this is operationalized as the
trade-off between memory and computation. For instance, costly item-specific
constructions may be useful if they prevent false negative errors or describe
an irregular form that is entrenched in its own right. But the many possible
item-specific chunks will, on the whole, be discarded because of their large
contribution to grammar complexity.

2.5 Parsing Corpora: True and False Positives
Parsing a construction grammar differs from other parsing problems in

computational linguistics because any given span could be represented by
multiple constructions. For phrase structure grammars, on the other hand, we
can assume that there is one set of boundaries between each syntactic unit,
even if a smaller unit is nested within a larger unit. For example, the sentence
in (2.5a) could receive the constituent parse notated with brackets in (2.5b).
At the top level, there are three units: a noun phrase, a verb phrase, and an
adverb phrase. The verb phrase contains within it two sub-constituents, both
noun phrases. Because a phrase structure grammar would be converted into
binary Chomsky Normal Form, each parsing action involves merging two units
into one: for example, “the neighbours” would be merged into a np given the
following rule: np -> det n.

(2.5a) “The neighbours gave me a hand with the car yesterday.”
(2.5b) [np the neighbours] [vp gave [np me] [np a hand]] [advp yesterday]
(2.5c) [syn: NP – sem:<transfer> – sem: <animate> – syn: NP]
(2.5d) [syn: NP – lex:”gave” – sem: <animate> – lex: “a hand”]

In this case, then, the parsing algorithm scans over the sentence searching for
adjacent units to merge. The common CKY algorithm (c.f., Grune and Jacobs
2008) creates a parse chart by iterating over the sentence and finding all adjacent

54 Elements in Cognitive Linguistics

pairs which can be merged. Each merger potentially creates a new possible
merger: for example, once “the neighbours” is merged into a np, it is possible
to satisfy a rule like s -> np vp. The algorithm creates a chart with all possible
sequences of mergers; the goal for a supervised parsing algorithm, then, is to
learn from an annotated corpus which of these potential parses is most likely.

The first difference here with computational construction grammar is that
the relevant spans are of arbitrary length, rather than constrained to sequences
of only two units. This is a part of the basic idea of construction grammar:
“threw the ball into the crowd” and “threw the meeting into an uproar” might
receive the same constituent parse but they represent, at the very least, different
underlying constructions. They are different constructions because of their
properties as larger units and thus must be identified as a whole.

These issues of semantics and word sense could be handled, however, using
sub-categorizations in the lexicon together with selectional restrictions, as in
Generalized Phrase Structure Grammar (Gazdar, Klein, Pullum, & Sag, 1985).
While CxG provides a motivated cognitive and psycholinguistic theory for such
categorizations and constraints, even the simpler GPSG formalism could capture
a good deal of the phenomena which CxG is used to describe. For example, the
slot-constraints shown in the construction in (2.5c) could also be represented
using sub-categorized phrase structure rules.

The larger problem has to do with levels of abstraction. There is also an
idiomatic construction, represented in (2.5d), which uses item-specific lexical
constraints. The sentence in (2.5a) thus is a token of both the generalized
ditransitive construction in (2.5c) and the idiomatic construction in (2.5d). This
kind of nesting is not simply structure within a sentence but rather structure
within the grammar, in the sense that (2.5d) is a child that inherits properties of
(2.5c). From a practical perspective, then, the parsing problem is that a sentence
can have multiple parses, each identifying constructions at different levels of
abstraction. The presence of one construction does not preclude the presence of
another, potentially overlapping, construction.

This means that each construction is independent. Thus, as shown in the
algorithm in Table 19, the basic approach is to iterate over each construction
in the grammar and search for that construction in a given sentence, from
left to right. First, each word in the sentence is enriched using its category
memberships into a tuple representing its lexical, syntactic, and semantic values.
For example, the word “neighbour” in (2.5a) would be represented hypothetically
as (lex’: “neighbor”, syn: N, sem: <animate>). These values correspond with
the ontology of slot-constraints used to formulate constructions in the first place
(this is hypothetical because this ontology is entirely usage-based and does not

Computational Construction Grammar 55

Variables
𝑛𝑜𝑑𝑒 = slot-constraint in the input corpus
(lex, syn, sem) = the domain memberships for each 𝑛𝑜𝑑𝑒

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑇 𝑦𝑝𝑒 = Lexical, Syntactic, or Semantic
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = Specific slot-constraint
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = a sequence of slot-constraints contained in the grammar
𝑐1 = starting node of construction
�𝑐𝑖 ...𝑐𝑛� = successor constraints in construction
Main Loop

1 for each construction in the grammar:
2 for each node in line:
3 Categorize the (lex, syn, sem) values for current word
4 if 𝑐1 (ConstraintType) == 𝑛𝑜𝑑𝑒1 (ConstraintType):
5 for 𝑖 in construction:
6 if 𝑐1 (ConstraintValue) != 𝑛𝑜𝑑𝑒1 (ConstraintValue):
7 stop
8 else:
9 match starting at node

Table 19 Construction Parsing Algorithm

assume categorizations like NOUN).8 The algorithm then checks to see if each
of the successive slot-constraints in the construction is satisfied by a particular
sequence. Any constraint that is not satisfied stops that branch of the search.
Stopping the search improves the efficiency of the algorithm, which is important
because constructional parsing has a larger hypothesis space to explore. Recall
that out-of-vocabulary words are assigned to the nearest syntactic and semantic
word category using their character-based embedding representations, so that
this algorithm is able to account for unknown words.

The output of this construction parsing algorithm is, for each construction,
both the number of matches per sentence (its frequency) and the indexes of
the matches. For some tasks, like enforcing the frequency constraint, only the

8This stage is context-free in the sense that a word is assigned to syntactic and semantic categories
before it is assigned to specific constructions.

56 Elements in Cognitive Linguistics

number of matches is relevant. For other tasks, however, like calculating the
regret portion of the 𝐿2 term for mdl, we reconstruct which parts of the sentence
are tokens of which constructions. Some sequences will belong to multiple
constructions of different levels of abstraction, as in (2.5c) and (2.5d) above.
But other sequences will be tokens of no construction and thus will constitute
regret or error in the grammar, in the sense that the grammar fails to adequately
describe some part of the observed usage.

(2.5e) [syn:150 are > syn:77 determined-permitted < lex: “to” > lex: “see”]
(1) “are allowed to see”
(2) “be able to see”
(3) “am unable to see”
(4) “was unable to see”
(5) “are delighted to see”
(6) false positive: “be possible to see”

We can define a true positive as a token or example of a construction that
has been correctly identified. This can be constrasted with false positives in
which the token deviates in some way from the constructional representation.
Here we consider several examples of constructions from 1 million words of the
news comments corpus, together with examples of false positives. For example,
the construction in (2.5e), formulated now using empirical and unsupervised
slot-constraints, has the tokens in (1) through (6). These describe a complex verb
phrase in which the main verb encodes a property of the agent who undertakes
the action contained in the second verb. The final example differs because it
is most likely an impersonal agent, as in “It will be possible to see the eclipse
tomorrow”. While not strictly speaking a false positive error, this example
differs from the others even though it satisfies the same set of constraints.

Another example is shown in (2.5f). This is another complex verb phrase,
with the main verb encoding an evaluation of an on-going action and the second
verb falling into the usage-based category demonstrate-conform. The first five
tokens are good examples of this construction and show the flexibility of this
fully unsupervised approach to constructions. The final example, however, again
does not fit necessarily with the other examples, as “exist” is a different sort
of verb. While again not a proper false positive, this is an example of how
the parsing of construction tokens leads to some poor examples. Similarly,
the construction in (2.5g) is a pairing of subject and verb where the subject is
a pronoun of some type. The verb comes from a semantic domain of social
communication, like “agree” and “support”. The final example, however, is a

Computational Construction Grammar 57

poor fit for this construction because it has a different syntactic valency.

(2.5f) [syn:211 chooses-decides < “lex”:to > syn:29 demonstrate-conform]
(1) “seeks to encourage”
(2) “tends to reflect”
(3) “choose to interpret”
(4) “continues to support”
(5) “fails to address”
(6) false positive “continues to exist”

(2.5g) [syn:68 he-who > sem:82 considers-acknowledges]
(1) “he engages”
(2) “she criticizes”
(3) “everyone agrees”
(4) “who supports”
(5) “nobody acknowledges”
(6) false positive“who prides”

The second difference here is that usage-based computational construction
grammar is necessarily unsupervised. Thus, in the beam search algorithm used
to identify potential constructions, we used the Δ𝑃 association measure and
a frequency measure to guide which chunks should be in the grammar. It is
essential that computational construction grammar be unsupervised because of
the projection problem (Fodor and Crowther 2002): the grammatical exposure
that a learner experiences cannot be used for positive or negative syntactic
evidence until that exposure has been transformed into a potential representation.
This is a serious problem for usage-based approaches to syntax. For example,
even if a learner has been exposed to the generalized and idiomatic ditransitives
in (2.5a), this exposure cannot count as evidence towards either (2.5c) or (2.5d)
unless the learner has somehow put together those potential representations.
This projection problem is particularly challenging for CxG because, as noted
earlier, the hypothesis space of potential constructions is larger than in other
types of grammars. And the larger this hypothesis space becomes, the more
difficult it is to say that a learner is aware of the particular structure it has been
exposed to. Put another way, constructions cannot be observed in usage unless
constructions are first hypothesized for describing that usage.

For the grammars learned here, all the structure is based on the distribution
of words in a corpus. Thus, assuming that the language learner is able to identify
and distinguish between distinct word-forms, these representations require only

58 Elements in Cognitive Linguistics

maintaining a memory of frequencies and co-occurrences. The Δ𝑃 is based on
adjacent pairs, with the direction of association accounting for the degree to
which one of those pairs has more or fewer possible combinations. The cbow
representations are based on the immediate surrounding context and the sg
representations are based on predicting non-local context (i.e., semantic frame)
given a word. In each case, our basic representations or basic constructions can
be formed without intermediate syntactic representations.

2.6 Joining Shared Slots:Second-Order Constructions
In CxG, constructions are posited to exist at all levels of abstraction. For

example, the lexical item in (2.6.1) could be considered a single-word construc-
tion that maps an arbitrary phonetic form to a particular set of meaning and
usage. The verb phrase in (2.6.2) could also be considered a construction, a
transitive verb with a specific sense of “run”. And, finally, the larger verb phrase
in (2.6.3), which now includes a target or destination for the verb, could also be
considered a construction because it is not fully predictable given (2.6.2). We
so far have learned multi-word constructions, for example the sort that would
describe (2.6.2). In this section we consider a distinction between constructions
at different levels of abstraction and develop an algorithm for clipping together
existing constructions.

(2.6.1) run
(2.6.2) run a business
(2.6.3) run a business into the ground

In the first case, single-word constructions like lexical items or word classes
are called basic constructions. These are learned as part of the unsupervised
ontology of slot-constraints. Thus, the lexicon and the membership of distri-
butional categories constitute our basic constructions. The next level higher,
first-order constructions, are learned using the beam search algorithm
described above and evaluated using Minimum Description Length. These
multi-word constructions constitute the core of the grammar. Just as in (2.6c),
however, constructions can also contain first-order constructions as their slot-
constraints, resulting in larger constructions that are joined together. These are
called second-order constructions and here we describe an algorithm that
joins or merges constructions which have compatible slot-constraints.

Computational Construction Grammar 59

Variables
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = a sequence of slot-constraints
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛�𝑖� = the ith slot in construction by position
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = frequency threshold for new clipped constructions
𝑛𝑒𝑤𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = new second-order construction
𝑝𝑎𝑟𝑠𝑒𝑑𝐶𝑜𝑟 𝑝𝑢𝑠 = index of construction matches for corpus
𝑝𝑎𝑟𝑠𝑒𝑑𝐶𝑜𝑟 𝑝𝑢𝑠�𝑖� = construction matches at position 𝑖 (word-level)
Main Loop

1 while True:
2 clipCounter = 0
3 for 𝑖 in parsedCorpus:
4 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛1 = parsedCorpus[i]
5 for 𝑗 in parsedCorpus:
6 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛2 = parsedCorpus[j]
7 if 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛1��1�𝑖𝑛𝑑𝑒𝑥 �� 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛2�0�𝑖𝑛𝑑𝑒𝑥 :
8 newConstruction = 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛1 � 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛2�1 ��
9 if freq(newConstruction) > threshold:
10 add newConstruction to grammar
11 clipCounter += 1
12 if clipCounter == 0:
13 break

Table 20 Construction Clipping Algorithm

The algorithm for clipping first-order constructions together is shown in
Table 20. The basic idea is to find pairs of constructions with overlapping slot
constraints: cases in which the first slot in one construction is the same as the last
slot in another. In this context, the same means that both constructions occupy
the same position in the sentence. For example, imagine that a phrasal verb
construction describing a motion-event (e.g., run into) occurs with an animate
adpositional phrase construction (e.g., into the mayor). These two construction
would overlap by position, whether or not the specific slot-constraints match.
These overlapping constructions are joined or clipped together into a single larger
construction. To avoid spurious clippings, the training corpus is then parsed

60 Elements in Cognitive Linguistics

and only candidates above the frequency threshold are retained. The result is a
set of second-order constructions each of which contains multiple first-order
constructions as slot-fillers. Each clipping action joins two constructions. The
algorithm is contained in a loop which searches for new clippings iteratively
until no more are possible or until a certain number have been found (a stopping
condition that improves efficiency).

Examples of second-order constructions are shown in (2.6a) through (2.6g)
below. In the first case, a passive verb construction (“was selected by”) is joined
with a noun phrase which provides the agent (“by the atlanta falcons”). In this
case, the noun phrase is specifically restricted to a category which includes
sports teams. In (2.6b), a noun phrase that describes the orientation of a physical
object (“side of”) is joined with a prepositional phrase describing that object
(“of the river”) to produce a larger description.

(2.6a) [syn: was – syn: selected – syn: by – syn: the –CLIP– syn: steelers]
(1) “was selected by the edmonton oilers”
(2) “was selected by the buffalo sabers”
(3) “was drafted by the rams”

(2.6b) [syn: parapets – sem: of – sem: the –CLIP– sem: river]
(1) “side of the river”
(2) “edge of the basin”
(3) “walls of the canal”

The example in (2.6c) combines a declarative main clause (“i will tell you”)
with an additional object which transitions into a subordinate clause (“what
you need to do”). In (2.6d) a noun phrase (“a man”) is joined with a relative
clause which further describes that noun (“who cannot even”). In both of these
cases, the valency of the original construction is increased by adding either an
additional argument or subordinate material within the main phrase.

(2.6c) [lex: i – sem: will – lex: tell –CLIP– syn: you – syn: what]
(1) “i’ll tell you what”
(2) “i will tell you how”
(3) “i can tell you something”
(4) “i will tell how when”

(2.6d) [sem: a – syn: rascal – syn: who – syn: wont –CLIP– sem: have]
(1) “a man who cannot even”

Computational Construction Grammar 61

(2) “a lawyer who would have”

In (2.6e) we see a declarative main clause with a verb of thinking or talking
(“i saw”) joined together with a complement clause with a null complementizer
(“you are”). In (2.6f) an adjective phrase (“lucky enough”) is joined together
with an infinitive verb phrase that describes an action (“to find”), so that the
adjective describes the agent of that action. And, finally, in (2.6g) we see
an idiomatic phrase that involves an act of conspiring (whether a noun as in
“collusion” or a verb as it “collude”) together with the party being conspired
with. This last example shows how a single construction can capture a shared
meaning across different phrase structures.

(2.6e) [lex: i – syn: think-guess – lex: you –CLIP– syn: are]
(1) “i say you are”
(2) “i think you are”
(3) “i guess you are”

(2.6f) [syn: think-guess – sem: enough – lex: to –CLIP– syn: bring]
(1) “lucky enough to find”
(2) “smart enough to come”

(2.6g) [sem: colluding – sem: with – lex: the –CLIP– syn: foreigners]
(1) “collude with the russians”
(2) “collusion with the russians”

These examples show cases where larger constructions are created by joining
multiple existing constructions together. In order to be more precise about the
level of abstractness of constructions, we distinguish between basic constructions
(learned as part of the ontology of slot-constraints), first-order constructions
(learned from the beam-search parsing together with grammar evaluation), and
second-order constructions (learned by clipping together first-order construc-
tions). Each of these increasingly complex structures is formed by joining
together the previous layer of structure, thus modelling the emergence of con-
structions without innate linguistic knowledge. This idea is expanded in the next
section with a focus on scaffolding constructions that contain different types of
representations, so that item-specific lexical constructions are learned first and
more complex syntactic constructions are learned later.

62 Elements in Cognitive Linguistics

2.7 Scaffolding Structure
For a language learner, grammatical structure emerges piece by piece, bit by

bit. As a result of the projection problem, more complex grammatical structures
cannot be posited until simpler structures have been learned, allowing the learner
to see new combinations of those simpler structures. For example, a complex
second-order construction would not be visible to a learner until the previous
layers (basic constructions, first-order constructions) have been learned first. We
have partially modelled this by progressing from category formation to first-order
constructions to second-order constructions. In this section we present a more
explicit approach to the scaffolding of grammatical structure during learning.
The basic idea is to repeat the underlying learning algorithm three times, each
with a different set of representations: first, lexical-only constructions which
make no assumptions about word classes; second, syntax-only constructions
which ignore meaning-based and item-specific constraints; and third a full
construction grammar which allows all types of slot-constraints. This approach
to scaffolding structure iterates over construction types of increasing complexity.

Lexical constructions (those containing only item-specific lexical constraints)
will emerge before syntactic constructions in the sense that these surface-level
patterns are directly observable. Syntactic constructions, on the other hand,
will begin to emerge only once grammatical word classes have themselves been
learned (here, after the examplar-based clustering is completed). Finally, the full
grammar combines lexical, grammatical, and meaning-based constraints; this
type of structure would emerge after the early rounds have been completed. We
use the terms learning and emerging together, with the second term emphasizing
that the grammar is not fixed once it is learned but rather is subject to change:
for example, growing increasingly complex in both the number and the type
of constructions it contains. In this section we compare these three stages of
emergence, separating the increasingly complex constructional representations.

First, we find lexical-only constructions. These are phrases which, by
definition, have only a single realization of the slot-constraints (a type-token
ratio of 1). For example, a lexical-only grammar contains common prepositional
phrases like (2.7a) and common adjective-noun combinations like (2.7b). There
are also complex noun phrases (such as 2.7c) and common verb phrases (such
as 2.7d). However, because this first stage of scaffolded learning has no access
to word classes, the constructions are all item-specific.

(2.7a) [lex: “across” < lex: “the” > lex: “river”]
“across the river”

Computational Construction Grammar 63

(2.7b) [lex: “visual” – lex: “artist”]
“visual artist”

(2.7c) [lex:“the”>lex:“national”>lex:“register”<lex:“of”>lex:“historic places”]
“the national register of historic places”

(2.7d) [lex: “was” > lex: “coined” < lex: “by”]
“was coined by”

Second, we find syntactic-only constructions based on the local cbow
embeddings. The example in (2.7e) is a prepositional phrase indicating location
in a natural environment: much like selectional restrictions, this distributional
category is not simply nouns but nouns of a particular type (here, lake, sea,
water). Similarly, (2.7f) is a verb together with an adverbial adjunct, but with
both categories defined not with abstract parts-of-speech so that the class of
verbs is restricted (set, worked, switched).

(2.7e) [syn:252 unique:in < syn:250 unique:the – syn:238 seawater-groundwater]
(1) “in the lake”
(2) “in the sea”
(3) “in the water”
(4) “in the ocean”
(5) “in the air”

(2.7f) [syn:98 generally-presumably – syn:196 scrapped-switched]
(1) “regularly set”
(2) “previously worked”
(3) “often dubbed”
(4) “ultimately switched”
(5) “previously backed”

In (2.7g) we see a passive verb with the beginning of a prepositional phrase
that specifies the agent. As before, this is formulated with verb sub-categories,
here verbs of writing or producing some piece of information. Similarly, the
copula construction in (2.7h) contains multiple pronouns as subject but the
noun is sub-categorized to include items that specify the social role of a human
(teacher, councilor, resident). A contrast with (2.7g) is given in (2.7h) with a
different sub-category of verb: similar constructions with non-overlapping sets
of tokens.

64 Elements in Cognitive Linguistics

(2.7g) [syn:257 was – syn:61 selected-delisted – syn:149 by]
(1) “was released by”
(2) “was written by”
(3) “was published by”
(4) “was drafted by”
(5) “was selected by”

(2.7h) [syn:74 he-she > syn:257 was – syn:254 a > syn:206 barrister-landowner]
(1) “he was a teacher”
(2) “who was a servant”
(3) “he was a councilor”
(4) “he was a resident”
(5) “she was a solicitor”

(2.7i) [syn:17 are – syn:84 utilized-complemented < syn:149 by – syn:250 the]
(1) “are owned by the”
(2) “are provided by the”
(3) “are distributed by the”
(4) “are coordinated by the”
(5) “are operated by the”

Third, the full construction grammar builds on all three types of slot-
constraints in the ontology of basic constructions, forming the most complex
representations. These show the first examples of semantic slot-constraints,
which capture paradigmatic relationships alongside the previous syntagmatic
relationships. For example, (2.7j) represents a phrasal verb that includes all
different forms of the verb to flow. The combination of syntactic and lexical
constraints is shown in (2.7k), a complex noun phrase which indicates players
of many different sports together.

(2.7j) [sem:1708 flow-flows < syn:124 over-through]
(1) “flowing from”
(2) “flow through”
(3) “flows into”
(4) “overflow from”
(5) “flows across”

(2.7k) [syn:197 basketball-soccer > lex: “player”]
(1) “football player”
(2) “ice hockey player”

Computational Construction Grammar 65

(3) “soccer player”
(4) “tennis player”
(5) “basketball player”

Another combination of syntactic and semantic constraints is shown in
(2.7l), where a particular domain of adverb is modifying a particular domain
of verb. Given the impersonal style required by Wikipedia, from which these
constructions are learned, this construction provides a way of attributing a
sentiment to a larger population than the individual author. A complex noun
phrase in (2.7m) contains all three types of constraints to indicate examples like
“a species of beetle”, again a construction that is particularly entrenched in the
Wikipedia register. Finally, an infinitival verb phrase is represented in (2.7n),
with the semantic constraint on the main verb providing a modality that the
agent tried to undertake some action. These examples show how the interaction
between slot-constraints allow many different levels of grammatical description,
increasing in complexity as more types of representation are included.

(2.7l) [syn:98 generally-presumably > sem:1658 considered-regarded]
(1) “also known”
(2) “generally considered”
(3) “frequently cited”
(4) “widely regarded”
(5) “initially viewed”

(2.7m) [sem:473 some > sem:308 species < lex: “of” > syn:128 grasshopper]
(1) “a species of beetle”
(2) “a species of orchid”
(3) “a genus of cactus”
(4) “a genus of tiger”

(2.7n) [sem:747 attempting-tried < sem:46 to > syn:34 throw-turn]
(1) “unable to leave”
(2) “attempting to catch”
(3) “tried to shoot”
(4) “attempts to go”
(5) “managed to hide”

This section has presented an iterative approach to scaffolding structure
in which grammars of increasing complexity are learned by including more
basic constructions (i.e., slot-constraints) in the learning process. The examples

66 Elements in Cognitive Linguistics

Figure 13 Cycling Exposure and Emergence
(Accumulating Grammatical Structure)

discussed result from applying the same underlying algorithm to different
types of input. These three grammars can then be merged into a final full
construction grammar, providing a synthesis of constructions at different levels
of abstraction. A fully recursive approach to scaffolded structure would allow
new constructions to be built on top of existing constructions, so that (for
example) lexical constructions could fill a single slot within a larger syntactic
construction. This fully recursive model remains a problem for future work.
The central challenge is to allow constructions to be bundled as a single unit
that can satisfy slot-constraints in other larger constructions. On the one hand,
a fully recursive approach like this would greatly expand the already large
hypothesis space. On the other hand, it would increase the complexity of
construction parsing as the presence of individual constructions would no longer
be independent: the discovery of one construction would directly feed the
presence of other constructions relying on it to satisfy a slot-constraint. This
challenge thus remains outside the scope of the current Element.

3 Forming the Constructicon

Construction grammars are more than just sets of individual constructions.
The grammar as a whole becomes more complex over time through both increased

Computational Construction Grammar 67

exposure and scaffolded structure that allows more complex constructions to
be assembled. This final section explores the nature of the grammar in more
detail, as outlined in Figure 13. We first consider the role of new exposure on
an existing grammar: the learning process is never entirely finished. In Section
3.1 we present a model of forgetting-as-learning which prunes constructions
from the grammar over time, allowing those constructions with more productive
slot-constraints to rise to the top. We then consider the nature of the grammar as
the model is exposed to more data, looking at the relationship between grammar
complexity and corpus size in Section 3.2. These experiments allow us to
measure the impact of increased exposure on grammars as both the number of
constructions and the complexity of constructions increases.

We then turn to the problem of emerging structure within the grammar itself,
viewing the constructicon not as a set of individual constructions but as an
interconnected network which allows both hierarchy and overlap between con-
structions. This constitutes a further unsupervised learning problem, organizing
constructions into clusters of similar representations. First, in Section 3.3 a
type-similarity approach is used to cluster related constructions together, with a
focus on sequences of slot-constraints. Second, in Section 3.4 a token-similarity
approach is used for the same problem, this time by finding constructions
which have overlapping tokens in the corpus. These two approaches provide
network structure within the grammar, producing third-order constructions
which are composed of related first-order and second-order constructions. We
complete the section by considering the implicit influence of slot-constraints
across a construction (Section 3.5), by undertaking a linguistic analysis of a full
construction grammar (Section 3.6), and by using type frequency to measure
the productivity of constructions (Section 3.7). Because a human learner never
stops being exposed to additional usage, Section 3.8 puts forward a continu-
ous learning algorithm which cycles between exposure and emergence over
time. The underlying idea in this section, then, is to learn structure within the
grammar now that the previous section has learned structure within individual
constructions.

3.1 Forgetting for Learning: Pruning Rates
Given an initial set of exposure, computational CxG builds grammatical

structure by using emerging word classes as slot-constraints (basic constructions),
merging these constraints into first-order constructions, and finally merging these
constructions together into second-order constructions. These constructions
constitute the learner’s hypothesis about the productive units underlying the

68 Elements in Cognitive Linguistics

usage in the corpus. This hypothesis has been formed by balancing the competing
demands of memory and computation, the need to include both irregular forms
and predictable forms. Since constructions emerge from usage, however, this
process is not constrained to a single time period: exposure continues.

This section presents a model of forgetting during learning. The basic
idea is that continued exposure allows the learner to test these hypothesized
constructions and make changes as needed. In computational terms, an initial
grammar is formed given exposure to a corpus, but exposure continues in the
form of new sub-corpora (which still represent the same population and register).
For each new sub-corpus, those constructions which are present are reinforced or
strengthened. But those constructions which are not present are weakened and,
ultimately, forgotten. This slow but steady process of forgetting brings to the
fore those constructions which are the most productive, whose generalizations
extend beyond the training corpus itself.

(3.1a) [lex: “run” – lex: “the” – lex: “business”]
(3.1b) [lex: “run” – lex: “a” – lex: “company”]
(3.1c) [lex: “run” – syn: DET – lex: “business”]
(3.1d) [lex: “run” – syn: DET – syn: N]
(3.1e) [lex: “run” – syn: DET – sem: <organization>]

The mechanism of forgetting allows us differentiate between fully produc-
tive (continuously recurring) constructions and those which were only seemingly
productive in the initial corpus. In this sense, forgetting is a mechanism for
generalization. Consider the potential constructions in (3.1a) through (3.1e).
Each of these is an alternate representation for the same underlying construction,
licensing utterances like “run the business” or “run a company”. The differ-
ence is that each captures a different level of abstraction, describing a slightly
different set of utterances. The challenge for generalization is to determine
which constraints capture the essential properties of this construction and which
capture extraneous and forgettable noise.

Human learners have a predictable rate of forgetting cues to which they are
exposed. Recent work has shown that forgetting can help word learning, in the
sense that stimuli presented together with an interval of unrelated stimuli are
acquired more robustly than stimuli presented in strict succession. A gap or
forgetting period between sets of exposure increases retention (Vlach, 2019;
Vlach & DeBrock, 2019). From a computational perspective, our construction
learning algorithm is like learning from stimuli presented all at the same time.
We augment this, then, with a forgetting period in which new stimuli can
overwrite the previous stimuli, forcing unproductive generalizations to fall away.

Computational Construction Grammar 69

Once packaged into the continuous learning algorithm presented in Section
3.8, the learner is exposed to alternating periods of exposure and forgetting, the
same environment which promotes human learning.

Variables
𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = a sequence of slot-constraints
𝑤𝑒𝑖𝑔ℎ𝑡 = a weight for each construction, between 0 and 1
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = value below which constructions are forgotten
𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = amount to reduce weights of unobserved constructions
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 = amount of data, in words, to observe each iteration
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = new corpus of exposure for forgetting and reinforcing
𝑠𝑒𝑐𝑜𝑛𝑑𝑂𝑟𝑑𝑒𝑟 = a construction made up of two merged constructions
Main Loop

1 for observation in corpus[observationSize]:
2 for construction in grammar:
3 if construction not present in observation:
4 if construction is secondOrder:
5 weight = weight - (increment/2)
6 else:
7 weight = weight - increment
8 if weight < threshold:
10 remove construction from grammar

Table 21 Construction Forgetting Algorithm

The forgetting algorithm itself is shown in Table 21 and the impact of
forgetting-as-learning on the constructicon is shown in more detail in Table 22,
using the Wikipedia corpus. The main loop in the algorithm iterates over new
sets of exposure, parses each construction, and updates its weights accordingly.
Here we use 40 rounds of forgetting, each with 50k words of observation. The
adjustment increment of 0.20 means that a construction must be unobserved
for five successive rounds of new exposure to be forgotten (a total of 250k
words). The entire forgetting stage iterates over 2 million words of exposure.
Clipped constructions combine multiple existing constructions; thus, because
these depend on other entrenched representations, the forgetting or decay rate

70 Elements in Cognitive Linguistics

for second-order constructions is half of that for first-order constructions.

Lexical-Only Syntactic-Only Full Grammar
Round 1 19,188 6,179 15,397
Round 5 15,060 4,891 13,784
Round 10 11,754 3,967 12,167
Round 15 9,805 3,489 11,105
Round 20 8,619 3,168 10,437
Round 25 7,812 2,983 9,904
Round 30 7,241 2,846 9,532
Round 35 6,821 2,722 9,195
Round 40 6,465 2,637 8,965

Table 22 Size of Constructicon During Forgetting, by Construction Type

The impact of forgetting-as-learning on the constructicon is shown in Table 22
using the size of the constructicon, with separate values for the lexical-only and
syntactic-only and full grammars. Every fifth round of new exposure is shown
as a new row. Only 33% of the lexical constructions remain after forgetting, 42%
of the syntactic constructions, and 58% of the full constructions: this indicates
that these successively more complex grammars are forming longer-lasting
generalizations. In other words, the rather superficial constructions in the
lexical grammar do not extend well beyond the training corpus and thus are
quickly forgotten. But a majority of the constructions in the full grammar (with
all three types of slot-constraints) remain after forgetting, showing that these
generalizations are more robust than the surface-level lexical generalizations.

The basic idea in this section has been to interject a period of forgetting
between rounds of exposure in order to reinforce the most productive construc-
tions in the grammar. Each construction is a hypothesis about the underlying
structure contained in the usage and each round of forgetting tests these individ-
ual hypotheses. Those constructions which remain productive are strengthened.
And those which are not productive are forgotten. This pushes the grammar
towards deeper generalizations and away from the noise created by the large
hypothesis space of potential constructions that the learner is faced with.

Computational Construction Grammar 71

3.2 Acquiring Constructions: Growth of the Grammar
From a usage-based perspective, we hypothesize that grammatical structure

emerges progessively given exposure to increasing amounts of usage. Given this
hypothesis, we would expect that the nature of the constructicon would change
in several ways as constructions become more complex and more generalized.
First, we would expect that register-based differences between grammars would
lessen as the amount of exposure increases: for instance, as the constructions in
the grammar become more generalized, the difference between register-specific
grammars would tend to reduce. Recent work has shown that this is, in fact,
the case (Dunn & Tayyar Madabushi, 2021). Second, we would expect that
the grammars of similar languages would have a similar growth rate given
increased exposure. Other recent work has shown that this, also, is the case
(Dunn, 2022a). This section focuses on our third expectation: that larger training
corpora support more complex grammars.

Exposure Stage Lexical Syntactic Full
(Words) (Pruning) 1𝑠𝑡 2𝑛𝑑 1𝑠𝑡 2𝑛𝑑 1𝑠𝑡 2𝑛𝑑

0.25 Pre 4,145 75 2,742 99 6,398 1,720
million Post 3,138 67 2,057 85 5,347 1,623

0.50 Pre 9,127 261 4,254 152 6,534 1,255
million Post 4,994 206 2,455 122 4,665 1,111

0.75 Pre 13,719 464 5,228 212 9,419 2,324
million Post 5,715 269 2,492 138 5,783 1,875

1.00 Pre 18,504 684 5,956 223 12,093 3,304
million Post 6,165 300 2,516 121 6,510 2,455

Table 23 Construction Growth By Numbers of Constructions Learned (wk)

Recall that the Minimum Description Length metric balances 𝐿1 (grammar
complexity) with its ability to describe a test corpus (𝐿2). In other words,
greater complexity in the grammar is only justified so long as it produces a
corresponding gain in the description of the corpus. The side-effect of this
metric is that larger sets of exposure tend to justify or support larger grammars.
The overall encoding size of a corpus of a million words will be much greater
than a corpus of 250k words. A construction which occurs only a few times in

72 Elements in Cognitive Linguistics

the smaller corpus might not be worth including in the grammar, given the mdl
metric. Yet that same construction, occuring more often in the larger corpora,
may become worth including in the grammar after all. This influence of corpus
size on grammar complexity is compounded by the regret component of the
metric, in that eliminating a few false negative errors becomes more beneficial
as the overall number of errors increases. To some degree, then, the overall size
of the grammar depends on our evaluation metric.

The impact of exposure size on grammar size is shown in Table 23 for
the Wikipedia register, with exposure sizes ranging from 250k words to 1
million. The number of constructions in the lexical-only, syntactic-only, and
full grammars are shown both before and after the forgetting stage takes place
(all exposure types use the same parameters). The size of the grammar is further
divided into first-order and second-order constructions in each case. First, as
expected, the size of each grammar increases with increased exposure, both
before and after the forgetting stage. But the growth rate of the lexical grammar
is significantly higher: before forgetting, the first grammar contains only 22%
of the constructions in the final grammar, compared with 46% for the syntactic
grammar and 52% for the full grammar.

While the lexical grammar grows more quickly, it also loses more construc-
tions during forgetting; the growth rate after pruning is only 50%. With forgetting
included, the initial syntactic grammar contains 81% of the constructions in the
final grammar and the full grammar includes 82%. Thus, while the mdl metric
has a small influence, the size of the grammar is more dependent on forgetting.
This is important because it shows that the size of the grammar is an empirical
property of the observed usage, not just a side-effect of the mdl metric.

Exposure Lexical Cost Syntactic Cost Semantic Cost
250k words 16.36 7.40 12.31
500k words 17.27 6.25 11.08
750k words 17.82 5.59 10.33

1 million words 18.21 5.14 9.79
Table 24 Change in Encoding Costs by Exposure for the Full Grammar. This

shows how the metric is influenced by the size of the training corpus.

Increased exposure also has an influence on the costs of encoding different
types of slot-constraints, as shown in Table 24. As the amount of exposure
increases, the cost of each lexical constraint also increases, from 16.36 bits
to 18.21 bits on average. At the same time, however, the cost of syntactic

Computational Construction Grammar 73

constraints decreases from 7.40 bits to 5.14 bits and semantic constraints from
12.31 bits to 9.79 bits. This shows how the amount of exposure also influences
the nature of slot-constraints: item-specific lexical constraints become more
expensive over time and less likely to be kept in the optimal grammar. The
generalizations provided by syntactic and semantic word classes, however, grow
more robust so that their average cost decreases.

When taken together with previous work, the results in this section show
us that the size and complexity of the grammar increases with the amount of
exposure. Lexical constructions grow the most quickly but are also forgotten
the most quickly. Previous work has shown that register-specific grammars
become more similar given more exposure and also that the core (most frequent)
constructions are learned with a relatively small amount of exposure (Dunn &
Tayyar Madabushi, 2021). Other work has shown that grammars exposed only
to unique individuals grow more quickly, because those individuals have their
own idiosyncratic usage (Dunn & Nini, 2021). These findings combine with the
changing encoding costs for each type of constraint to show that constructions
grow more abstract and less item-specific when the training corpus is larger.
This is an important property of computational construction grammar because it
models the increasing complexity of grammars in human learners as they move
away from purely lexical representations (Bates & Goodman, 1997).

3.3 Networks 1: Similarity between Constructions
The focus until now has been on grammatical structure in the form of

individual constructions. Thus, we have treated the constructicon as a set of
constructions, albeit divided into first-order and second-order constructions
(based on clipping) and lexical, syntactic, and full grammars (based on scaf-
folding). But what are the relationships between constructions in the grammar?
There are two types of relationships to consider: first, based on similarity of
constructional representations themselves (in this section) and, second, based
on similarity between the tokens of constructions (in the next section).

Our basic approach to finding network relationships in the grammar, or
clusters of related constructions, is to measure the pairwise similarity between
constructions in order to produce a similarity matrix that can be used for
clustering into construction types. The first challenge is to measure the similarity
or overlap between constructions as defined by their slot-constraints. Consider
the examples in (3.3a) through (3.3c), from the Wikipedia corpus. All three are
prepositional phrases. The first two slot-constraints are shared: “of the”. Our
intuitions tell us that these are closely related constructions, most likely children

74 Elements in Cognitive Linguistics

of a more abstract “of the X” construction which, in turn, is the child of a more
abstract prepositional phrase construction.

(3.3a) [lex: “of” < lex: “the” > sem:161 posterior-anterior]
(1) “of the cephalon”
(2) “of the macula”
(3) “of the sternum”

(3.3b) [lex: “of” < lex: “the” > sem:533 diocese-archdiocese]
(1) “of the diocese”
(2) “of the archdiocese”
(3) “of the vicariate”

(3.3c) [lex: “of” < lex: “the” > lex: “nation”]
(1) “of the nation”

We use a sub-sequence matching algorithm to compare constructions as
sequences of slot-constraints. Values closer to 1 indicate a larger number of
overlapping sub-sequences and values closer to 0 indicate only a small number
of overlapping sub-sequences. Slot-constraints are veiwed as atomic units,
so that two syntactic constraints with different values are in no way more
similar than a lexical constraint and a syntactic constraint. This similarity
metric is then used together with the k-medoids algorithm (used in Section
1.4 to form word categories) in order to build structure in the constructicon.
This creates clusters of constructions, which we can think of as third-order
constructions: more abstract families which contain many related first- and
second-order constructions. As before, these clusters have an exemplar structure,
with constructions arranged according their distance from the exemplar at the
center of the cluster.

Drawing on the Wikipedia corpus, we first see a group of passive verb phrases
in (3.3d) through (3.3g). These four constructions show how alternate slot-
constraints can produce slightly different but related constructions. For example,
the distinction between (3.3d) and (3.3e) is the sub-category of prepositions used
after the passive verb. This difference is meaningful, in that “by” introduces
the agent of the verb while “as” introduces a noun phrase with a different
semantic role. Thus, these constructions differ in their semantics. By contrast,
(3.3f) differs from (3.3d) in its sub-category of main verb, each with its own
behaviours, so that the construction also captures verb valency. This is extended
in (3.3g), with yet another sub-category of passive verb. These closely related
constructions are thus clustered together, but remain distinguished because of

Computational Construction Grammar 75

their own unique meanings and valencies; taken together this is a more abstract
third-order construction composed of multiple first-order constructions.

(3.3d) [syn:74 he-she > syn: was – syn:61 selected – syn:149 by – syn: the]
(1) “he was selected by the”
(2) “it was sponsored by the”
(3) “he was hired by the”
(4) “she was drafted by the”
(5) “it was chosen by the”

(3.3e) [syn:74 he-she > syn:257 was – syn:61 selected-delisted – syn:209 as]
(1) “it was released as”
(2) “he was selected as”
(3) “he was appointed as”
(4) “she was elected as”
(5) “everything was represented as”

(3.3f) [syn:74 he-she > syn:257 was – syn:6 superseded – syn:149 by]
(1) “it was directed by”
(2) “she was chartered by”
(3) “he was defeated by”
(4) “it was opposed by”

(3.3g) [syn:74 he-she > syn:257 was – syn:78 admitted-asserted – syn:149 by]
(1) “he was arrested by”
(2) “he was convicted by”
(3) “he was sued by”

Another example of a type-based cluster of constructions is shown in (3.3h)
through (3.3k). These examples represent another verb phrase, this time a main
verb and an infinitive verb. In each case, the main verb represents the agent’s
intention in undertaking an action. This is represented by several sub-categories
of verb: in (3.3h), by different members of the paradigm of “fail”, in (3.3i)
by the cluster with “seeks” as its exemplar, and in (3.3j-k) by the cluster with
“determined” as its exemplar. There is a further semantic distinction between
these constructions based on the verb in the infinitive phrase, thus bringing
meaning-based differences into the distinction between constructions.

(3.3h) [sem:1215 failing-failed < sem:46 to > syn:22 demonstrate-predicate]
(1) “failed to identify”

76 Elements in Cognitive Linguistics

(2) “failing to provide”
(3) “failed to defend”
(4) “failing to ensure”
(5) “failed to achieve”

(3.3i) [sem:1155 seeks-strives < sem:46 to > syn:22 demonstrate-predicate]
(1) “seeks to develop”
(2) “tries to discover”
(3) “sought to exclude”
(4) “aims to focus”
(5) “seeking to unite”

(3.3j) [syn:132 determined-permitted < sem:46 to > sem:649 destroy-weaken]
(1) “attempt to seduce”
(2) “attempts to reclaim”
(3) “continued to antagonize”
(4) “proposed to eradicate”
(5) “began to rebuild”

(3.3k) [syn:132 determined-permitted < sem:46 to > syn:179 introduce-refer]
(1) “intended to replace”
(2) “forced to marry”
(3) “refused to submit”
(4) “willing to accept”
(5) “threatened to sue”

The basic idea in this section has been that pairwise similarities between
constructions can be used to build a similarity matrix for clustering related con-
structions together around their exemplar. A brief analysis of two such clusters
shows how this adds structure to the constructicon by bringing together those
constructions which are quite similar into a larger third-order construction.
Because the grammar contains constructions at all levels of abstractness, these
third-order constructions are important for organizing constructions around
family relationships, such parent and child and sibling constructions. This is
our first step in adding network structure to the constructicon.

Computational Construction Grammar 77

3.4 Networks 2: Similarity between Tokens
Constructions may have different constraints that lead to the same set of tokens

or, at least, to overlaping sets of tokens. The reason is that construction grammar
allows constraints at different levels of abstraction, producing redundancies.
For example, the constructions in (3.4a) through (3.4d) represent a type of
spatial prepositional phrase. However, the exact formulation of constraints
in these chunks leads to partially overlapping examples. In (3.4a), there are
purely item-specific constraints; in (3.4b) the head preposition is drawn from a
syntactic category; in (3.4c) the final noun is drawn from a semantic category;
and in (3.4d) both the preposition and the head noun are defined using larger
categories. From a usage-based perspective, any of these constructions could be
entrenched – either because of idiosyncratic behaviours or because of frequency.
Thus, we cannot rule out overlapping sets of constraints. But we do want these
overlapping constructions to be grouped together in the grammar.

(3.4a) [lex: “at” < lex: “the” > lex: “bottom”]
(1) “at the bottom”

(3.4b) [syn:124 over-through < lex: “the” > lex: “bottom”]
(1) “at the bottom”
(2) “on the bottom”
(3) “from the bottom”

(3.4c) [lex: “at” < sem:17 a-the > sem:631 top-topped]
(1) “at the bottom”
(2) “at the top”

(3.4d) [syn:124 over-through < sem:17 a-the > sem:631 top-topped]
(1) “at the bottom”
(2) “on the top”
(3) “from the top”
(4) “on the bottom”
(5) “from the bottom”

Using the same sequence matching algorithm as before, this time applied
to word-level sequences, we search for overlapping examples. For instance, all
four constructions here share the example “at the bottom” even though their
other examples differ. We take the highest match across all examples, so that
in effect these constructions are viewed as having at least one shared token.

78 Elements in Cognitive Linguistics

This token-based similarity matrix is then used to cluster related constructions.
Fuzzy matches are support by requiring an overlap of 0.75 to count as a match,
so that the tokens need not be exactly the same to count as overlapping. During
clustering, groups of constructions which are mostly empty (i.e., with only two
members) are merged into a single category. Also at this point, constructions
which have completely overlapping tokens (i.e., cases where slightly different
slot-constraints produce the same tokens) are merged into a single construction.

The first cluster of examples, in (3.4e) through (3.4h), describes noun phrases
involving a governmental entity. In (3.4e) the syntactic constraint on the head
noun makes these country-level entities, while in (3.4f) the same construction
is presented with states within the US. A similar set of constraints is found in
(3.4g), but the head noun is left open; this allows a wider variety of items to
fill the first slot, showing the implicit relationships between slot-constraints
(cf, Section 3.5). Finally, in (3.4h) a different form is taken, this time with
non-governmental entities (like “species” or “groups”) within an official area.
These examples show the impact of the fuzzy matches allowed, where the two
tokens being compared do not need to exactly overlap.

(3.4e) [syn: the > syn:214 delegation < syn: of – syn:41 poland-hungary]
(1) “the council of europe”
(2) “the united states of america”
(3) “the parliament of finland”
(4) “the government of denmark”

(3.4f) [syn: the > syn:214 delegation < syn: of – syn:171 missouri-arkansas]
(1) “the state of oregon”
(2) “the republic of texas”
(3) “the state of colorado”

(3.4g) [syn: the > syn:214 delegation < syn: of < syn: the]
(1) “the council of the”
(2) “the summit of the”
(3) “the assembly of the”
(4) “the elections of the”
(5) “the sovereignty of the”

(3.4h) [syn:126 localities-portions – syn: in < syn: the > syn:214 delegation]
(1) “stations in the united states”
(2) “districts in the state”
(3) “species in the united states”
(4) “dioceses in the united states”

Computational Construction Grammar 79

(5) “groups in the senate”

The second example of token-based construction clusters is shown in (3.4i)
through (3.4k). These examples are generic phrasal verbs, each with a specific
verb (a lexical constraint) and a generic preposition (a semantic constraint). The
token overlap here comes from the same prepositions in the same positions.
This type of third-order construction, then, joins together individual phrasal
verbs into a generic or more abstract phrasal verb construction.

(3.4i) [lex: “went” < sem:46 out-from]
(1) “went out”
(2) “went to”
(3) “went from”
(4) “went straight”
(5) “went back”

(3.4j) [lex: “taken” < sem:46 out-from]
(1) “taken at”
(2) “taken from”
(3) “taken to”
(4) “taken out”
(5) “taken back”

(3.4k) [lex: “returned” < sem:46 out-from]
(1) “returned to”
(2) “returned from”
(3) “returned when”

(3.4l) [lex: “moved” < sem:46 out-from]
(1) “moved to”
(2) “moved from”
(3) “moved back”
(4) “moved out”

Now that we have examined instances of both approaches to clustering
constructions, we see that these clusters provide more generic or generalized
representations, each with many children that are specific first-order or second-
order constructions. We use the intersection of both type-based and token-based
clusters to organize the grammar. In practice, this means that type-based

80 Elements in Cognitive Linguistics

clusters are formed first and then sub-divided into token-based sub-clusters.
This provides two tiers of family structure in the grammar.

Lexical-Only Syntactic-Only Full Grammar
Large Small Large Small Large Small

BL 17 194 15 161 90 1,008
NC 18 198 18 164 110 1,325
EU 39 529 20 264 111 953
PG 19 242 16 146 107 922
PR 24 283 13 148 72 833
OS 20 280 16 180 84 847
TW 16 150 11 95 76 946
WK 25 341 15 174 45 724

Table 25 Number of Families of Constructions (Third-Order). Large clusters
are type-based and represent a higher-order generalization; Small clusters are

token-based and represent sub-clusters within the type-based families.

The number of larger type-based families (Large) and smaller token-based
sub-families (Small) is shown for each register-specific grammar in Table
25. For instance, the full grammar from the blog corpus contains 90 large
families and just over a thousand sub-families. There are fewer families (and
thus a less diverse range of constructions) on Wikipedia with 45 families and
724 sub-families. These third-order constructions provide a higher level of
generalization. For example, the individual phrasal verbs in (3.4i) through
(3.4l) and the individual infinitival phrases in (3.3h) through (3.3k) capture
constructions at a higher level of abstraction. With each additional accumulation
of structure, the constructicon is emerging from the bottom up, here with
structure taking the form of network relationships within the grammar.

3.5 Emergent Constraints:Implicit Influences of Slot-Fillers
The grammar contains constructions that are sequences of slot-constraints,

where each constraint is itself a basic-level construction. On their own, these
basic level constructions can be analyzed according to their syntactic and

Computational Construction Grammar 81

semantic properties, as was done in Section 1. Once combined with other slot-
constraints, however, these basic constructions can take on new and emergent
properties that they did not exhibit in isolation. In other words, there is a sort of
coercion across slots in a single construction so that the grammatical description
it provides is not a simple sum of its parts. There is an indirect influence beween
slot-constraints, then, so that for example not all members of a category satisfy
the implicit joint constraints of a construction. This section examines several
constructions derived from the Project Gutenberg corpus to show the influence
that these implicit relationships between slot-constraints can exert.

We start with a comparison of (3.5a) and (3.5b), both containing the same
syntactic slot-constraint marked in bold (162). In (3.5a) this constraint appears
as a relative pronoun but in (3.5b) it appears as the first-person plural pronoun.
Thus, in this case the same underlying basic construction takes on a different
form when synthesized with the other slot-constraints in the construction. In
other words, the slot-constraint in isolation does not always predict its emergent
behaviours in a first-order construction.

(3.5a) [lex: “those” – syn:162 – syn:183 guessed-remembered]
(1) “those who understood”
(2) “those who knew”
(3) “those who thought”
(4) “those who heard”
(5) “those who wrote”

(3.5b) [syn: 162 – syn:85 wont-could – sem:1448 understand – sem:0 that]
(1) “we shall understand it”
(2) “we must recognize that”
(3) “we may understand that”
(4) “we shall speak more”

The examples in (3.5c) and (3.5d) show the implicit influence in a main-verb
slot-constraint. In the first case, (3.5c), the syntactic constraint in bold is an
active verb indicating motion towards something, with examples like “started”
and “ran” and “rushed”. Yet in the second case, (3.5d), the same constraint is
in a different constructional frame and appears as “struck” and ‘stopped” and
“smashed”. The previous constraint of interest (162) also appears here again,
but with yet another form (“have”). Thus, the exact properties of each basic
construction, via coersion, depend to some degree on the other constraints in
the construction. For instance, this is how the long-distance sem constraints

82 Elements in Cognitive Linguistics

take on a certain degree of grammatical information as well.

(3.5c) [syn:216 stumped-shoved – syn:173 into – sem:380 the – sem:360 road]
(1) “went into the park”
(2) “started toward the bridge”
(3) “ran along the trail”
(4) “rushed at the bridge”

(3.5d) [syn:85 wont-could – syn:162 – syn:216 stumped-shoved]
(1) “would have struck”
(2) “should have gone”
(3) “might have stopped”
(4) “would have smashed”

In (3.5e) the semantic constraint (2041) serves as an all-purpose auxiliary
verb, for example appearing as “will” and “cannot”. In (3.5f), however, this
same constraint appears only as the infinitival “to”. This is another example of
the different degrees of flexibility shown by slot-fillers.

(3.5e) [sem:2041 – sem:953 constrain-allow]
(1) “will dictate”
(2) “would impose”
(3) “may embrace”
(4) “cannot compel”

(3.5f) [sem:2204 endeavor – sem:2041]
(1) “endeavour to”
(2) “strive to”
(3) “undertake to”
(4) “strives to”

A final example, this time involving nouns encoded by a semantic constraint,
is shown in the contrast between (3.5g) and (3.5h). In the first instance, the
semantic domain 2114 appears as “door” and “window” because the construction
is encoding movement toward an interior location on a horizontal plane. In the
second instance, however, the construction as a whole is encoding movement
on a vertical plane, so that the same semantic constraint appears in the form of
“stair” and “stairs”. Here, again, the specific behaviour of a slot-constraint is
produced via coersion given its relationship with the other slot-constraints.

Computational Construction Grammar 83

(3.5g) [sem:64 turned – syn:173 into – sem:380 the –CLIP– sem:2114 door]
(1) “went toward the door”
(2) “moved toward the door”
(3) “turning from the window”
(4) “looked from the window”
(5) “pointed toward the doorway”

(3.5h) [syn:146 up – sem:380 the – sem:2114 door]
(1) “down the stairs”
(2) “on the stairs”
(3) “up the stairs”
(4) “up the stair”
(5) “on the stair”

This section has looked at examples of emerging constraints within a
construction which arise as a product of coersion or relationships between slot-
constraints. The basic idea is that, once embedded within a larger construction,
the behaviour of a basic construction conforms to its larger unit. This was seen
across pronominal forms, verbs, auxiliary verbs, and nouns. Having analyzed
this final attribute of constructional representations, we turn in the next section
to an analysis of the constructicon itself from a linguistic perspective.

3.6 Analyzing the Constructicon
Now that we have walked through the stages of learning a constructicon that

represents a particular population and register, we undertake a linguistic analysis
of selections of that constructicon. This constitutes an analysis of the final output
of computational construction grammar. In this case, we draw from the grammar
representing Project Gutenberg. We start with prepositional constructions and
then look at examples of nominal, verbal, and then clause-level constructions.

Starting in (3.6a), we see a second-order prepositional construction, or rather
a complex noun phrase clipped together with a prepositional phrase. This is
not a generic phrase structure prepositional phrase, as it is specific to a location
which can be surrounded. A more item-specific example from the same cluster
is shown in (3.6b), here confined to locations in the home or house. Thus,
this construction is related to interior locations. Finally, in (3.6c) we see a
prepositional phrase proper, here confined to a specific sense of “up” and “down”
in which the head noun is restricted to that class which is travelled by going “up”
or “down”: a river, a lake, a valley, etc. These examples show how constructions

84 Elements in Cognitive Linguistics

maintain elements of meaning in their grammatical representations.

(3.6a) [sem:380 a-the – syn:63 parapets – sem:6 of – lex: “the” –CLIP–
syn:225 courtyard]

(1) “the edge of the bench”
(2) “the side of the fireplace”
(3) “the ditches of the castle”
(4) “the ground of the mezzanine”
(5) “the walls of the room”

(3.6b) [sem:380 a-the – syn:63 parapets – sem:6 of – lex: “the” – sem:2167
parlour]

(1) “the walls of the room”
(2) “the wall of the house”
(3) “the windows of the house”
(4) “the ceiling of the room”

(3.6c) [syn:146 up-down – sem:380 a-the – sem:325 river-headwaters]
(1) “up the river”
(2) “down the river”
(3) “up the valley”
(4) “down the valley”
(5) “up the lake”

We look at two simple examples of nominal constructions in (3.6d) and (3.6e).
Both are defined with a lexical constraint “the” plus a head noun. But rather than
a meaningless phrase structure rule, the class of nouns here is specified using
a semantic constraint: in the first case, ships and, in the second case, horses.
Because nominal constructions like this are used to formulate larger verbal
constructions, for instance, these distinctions are necessary for formulating
selectional restrictions within larger verbal constructions.

(3.6d) [lex: “the” – sem:715 schooner-brig]
(1) “the whaler”
(2) “the schooner”
(3) “the steamer”
(4) “the sloop”
(5) “the frigate”

Computational Construction Grammar 85

(3.6e) [lex: “the” – sem:722 horse-mule]
(1) “the horse”
(2) “the pony”
(3) “the stallion”
(4) “the mule”
(5) “the mare”

Three examples of active verb phrases are shown in (3.6f) through (3.6h).
Each consists of the main verb plus the beginning of a prepositional phrase.
In the first case, we see how semantic constraints can capture paradigmatic
relationships, here with different forms of the verb “to roll”. And we also see
how the choice of preposition is verb-specific, in the sense that this use of “roll”
is up or down. In (3.6g) we see another example of a paradigmatic constraint,
with different forms of “to fly”. The choice of prepositions is much wider,
however, so that this is not constrained to one sense of the verb. Finally, in
(3.6h) we see a more item-specific construction from the same cluster, here with
different forms of “leap” together with a preposition like “into”. This verbal
construction thus indicates the valency of the main verb and would be clipped
directly with nominal constructions indicating the target location.

(3.6f) [sem:219 rolled – syn:146 up-down – sem:380 a-the]
(1) “rolled up the”
(2) “rolling on the”
(3) “rolled down the”
(4) “roll up the”

(3.6g) [sem:339 flying-fly – syn:173 into-through – sem:380 a-the]
(1) “flying into the”
(2) “flew across the”
(3) “fly through the”
(4) “flight from the”
(5) “flew away in”
(6) “flown from the”

(3.6h) [sem:237 leaping – syn:173 into-through – sem:380 a-the]
(1) “leaping into the”
(2) “leap into the”
(3) “leapt into the”
(4) “leaps into the”

86 Elements in Cognitive Linguistics

Three more verbal constructions are shown in (3.6i) through (3.6k), starting
with a passive construction in (3.6i), in the past tense. As before with verbal
constructions, there is not a single class for all verbs, rather classes for verbs with
a similar meaning and usage. The second-order verbal construction in (3.6j)
shows a case where one sense of the verb is specified, here “walk” in different
forms capturing movement relative to a location. The last example, in (3.6k),
shows a complex phrase with an infinitive object, the main verb specifying the
modality with which the infinitive verb is carried out. These examples show
some of the range of verbal constructions in the grammar.

(3.6i) [sem:1519 would – syn:223 been – syn:101 assimilated]
(1) “had been corrupted”
(2) “had been treated”
(3) “had been educated”
(4) “had been misinformed”
(5) “had been addicted”

(3.6j) [sem:1194 walking – syn:173 into – lex:the –CLIP– syn:225 courtyard]
(1) “walked towards the entrance”
(2) “walking into the town”
(3) “walked across the terrace”
(4) “walk across the garden”
(5) “walked round the house”

(3.6k) [syn:133 determined – sem:2041 will-to – syn:235 carry – lex: “up”]
(1) “determined to make up”
(2) “willing to give up”
(3) “tried to make up”
(4) “decided to give up”
(5) “trying to conjure up”

The last set of examples, in (3.6l) through (3.6o) represent clause-level
constructions that go beyond an immediate verb phrase. In (3.6l) we see a
comparative copula phrase with a range of comparative adjectives. In (3.6m)
there is an expletive subject “it”, a sort of filler that actually introduces an
impersonal verb phrase. Similarly, the example in (3.6n) shows a conditional
that begins a new clause. And, finally, in (3.6o) there is a verb of saying or
thinking that introduces a complement clause. This range of examples shows

Computational Construction Grammar 87

the way in which computational CxG captures clause-level structures; these
could be further clipped with nominal and verbal constructions.

(3.6l) [sem:26 ‘s-was – sem:1181 larger-smaller – lex: “than”]
(1) “is greater than”
(2) “was bigger than”
(3) “was greater than”
(4) “was larger than”
(5) “is larger than”

(3.6m) [sem:0 that-thought – syn:197 wasn-weren – syn:162 if-always –
syn:133 determined –CLIP– lex: “to”]

(1) “it is usually possible to”
(2) “it is now proposed to”
(3) “it is not possible to”
(4) “it is not necessary to”
(5) “it is only necessary to”

(3.6n) [lex: “if” – syn:162 if-always – syn:133 determined – sem:2041 will-to]
(1) “if she meant to”
(2) “if you fail to”
(3) “if we attempt to”
(4) “if they wished to”
(5) “if she expected to”

(3.6o) [syn:162 if-always – syn:133 determined –sem:2041 will-to –CLIP–
sem:589 think-know –sem:0 that-though]

(1) “always pleased to think that”
(2) “only meant to say that”
(3) “not prepared to agree with”
(4) “actually began to think that”
(5) “only began to feel that”

The discussion in this section has provided a short overview of some
prepositional, nominal, verbal, and clausal constructions from the grammar
derived from the Project Gutenberg corpus. Those constructions which are
quite similar (such as 3.6a-3.6b and 3.6d-3.6e) are in fact drawn from the
same third-order constructions, thus showing the generalization provided by
these more abstract constructions as well. While there are too many third-
order constructions to examine each individually, these examples provide a

88 Elements in Cognitive Linguistics

representative example of the way in which constructions join together to
represent grammatical structure at the sentence level.

3.7 Productivity in the Grammar
We expect that constructions within the grammar will range across the entire

lexico-grammatical continuum, between item-specific constructions (more like
lexical items) and schematic constructions (more like syntactic items). This
is one of the core empirical facts that motivates construction grammar. In
this section we use corpus-based measures of productivity to explore this
continuum within the grammar. The main measure used here is type frequency;
previously we have relied on token frequency alone for evaluating properties
like entrenchment.

(3.7a) [sem:0 i-even > syn:48 won’t – sem:0 i-even syn:48 won’t – lex: “to”]
(a) “i don’t even want to”
(b) “i won’t try to”
(c) “i should never need to”
(d) “i would never want to”

(3.7b) [syn:184 are-were > lex: “supposed” < sem :8 to]
(a) “are supposed to”
(b) “were supposed to”

The idea of type frequency can be illustrated using the examples in (3.7a) and
(3.7b). The schema or construct is the construction itself (i.e., 3.7a and 3.7b).
The type frequency is the number of unique examples found in a particular
corpus. In this case, these constructions are drawn from the blog grammar
and frequency is calculated using a 1 million word test sample from that same
corpus. The first example is quite productive, with a type frequency of 125
but the second example is quite item-specific with only two types per million
words. Thus, type frequency in a test corpus is a measure of the productivity of
individual constructions that can also be used to situate them on the continuum
between grammar and lexis. High token frequency may be comprised of a large
number of instances of the same construct but high type frequency shows that
variations are possible within the instances or constructs of a construction.

A break-down of grammar size and type frequency by register and level
of abstractness is shown in Table 26. Each row represents a separate register,
from blogs (BL) to Wikipedia (WK). The columns represent separate levels of

Computational Construction Grammar 89

abstractness: from first-order to third-order, which is broken into two categories
based on the larger type-based clusters (b) and the smaller token-based clusters
(a). The number of constructions is given under Cxns: for example, there are
11,467 first-order constructions in the blog register and 1,169 of the smaller
type-based third-order constructions. Within each type of construction the
table also shows the mean number of types per construction in a one million
word corpus (these type frequencies are averaged across 10 independent test
corpora to provide a more robust estimate). What we see, then, is that first-
order construction average around 20 types per construction while third-order
constructions average around 200 and 2,000, respectively. Constructions with
more types are more productive. There is a close relationship, then, between
position on the lexico-grammatical continuum and productivity.

1st-Order 2nd-Order 3rd-Order (a) 3rd-Order (b)
Types Cxns Types Cxns Types Cxns Types Cxns

BL 23 11,467 15 2,858 179 1,169 1994 105
EU 13 12,999 5 404 80 1,217 740 131
NC 20 16,596 10 793 178 1,489 2072 128
OS 26 14,388 11 636 229 1,027 2350 100
PG 24 15,255 11 363 194 1,068 1688 123
PR 19 11,567 14 365 147 981 1691 85
TW 21 12,052 13 388 181 1,041 2165 87
WK 17 9,824 7 330 140 898 2099 60
Table 26 Productivity of constructions by register and level of abstractness
using average type frequency within each category. Higher type frequencies

indicate more productive constructions.

The distribution of type frequencies as a proxy for productivity is shown
in Figure 14 for first- and second-order constructions (i.e., those which are
sequences of slot-constraints) and for third-order constructions in Figure 15
(i.e., those which are clusters of related constructions). We can interpret this
visualization as an approximation of the continuum between lexis-like construc-
tions (on the left with lower type frequencies) and syntax-like constructions
(on the right with higher type frequencies). While the mean type frequency
for first-order constructions is around 20, for example, we see that there are
constructions with type frequencies of several hundred parts per million and

90 Elements in Cognitive Linguistics

Figure 14 Distribution of type frequencies for first- and second-order
constructions by register-specific grammar

outliers (the diamonds) with many hundreds. These constructions with more
types are more schematic or syntactic in nature and there are fewer of these
simply because they capture higher-order generalizations. In the same way,
many third-order constructions have several thousand types per million words,
again indicating a higher level of abstraction and schematicity.

There are two main take-aways from this section: First, the relative produc-
tivity of constructions largely corresponds with our computational distinction
between first-order, second-order, and third-order constructions. Thus, this is
an empirical validation of that distinction. Second, we can use corpus-based
measures of productivity as a way of describing these constructions and thus
as a way of organizing and exploring the constructicon itself. This is a helpful
tool when the grammars contain many first-order constructions, some very
item-specific and others very schematic. These figures explicitly position the
constructicon on the continuum between purely lexical and purely schematic
representations.

Computational Construction Grammar 91

Figure 15 Distribution of type frequencies for third-order constructions by
register-specific grammar

3.8 Continuous Learning:Cycling Exposure and Emergence
So far we have used continued exposure to model the forgetting of construc-

tions as a part of the learning process and built network structure between
constructions in the grammar. The current model, then, takes an initial set of
usage and learns the ontology of slot-constraints together with a construction
grammar. Once this is complete, new exposure is used to observe the grammar,
test its grammatical hypotheses, and slowly forget those constructions which fall
out of usage. Thus, we have exposure for learning and exposure for forgetting.
This section expands this two-part cycle into continuous grammar learning by
alternating between learning and forgetting over time.

Just like a human learner, computational construction grammar is continu-
ously exposed to new usage. This usage alters the background distributional
patterns that reflect the learner’s linguistic knowledge. Thus, the expected
relationships between slot-constraints change over time. This can lead to
the emergence of new constructions, which themselves constitute individual

92 Elements in Cognitive Linguistics

hyptheses about the grammatical structure being observed. Additional new
exposure then again evaluates these new hypotheses during an additional round
of forgetting: some fail and thus are forgotten, but others pass and are reinforced.
The basic idea behind the continuous learning algorithm is to alternate between
the learning stage and the forgetting stage indefinitately over new sub-corpora.

Thus, computational CxG captures the accumulation of grammatical
structure: the more exposure, the more complex the grammar can become. At
the same time, the more exposure, the more constructions are added to the
grammar. While constructions can be forgotten, there is nonetheless a steady
accumulation of new grammatical structures that the learner discovers.

Variables
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 = amount of data to observe each iteration
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 = new corpus of exposure
𝑔𝑟𝑎𝑚𝑚𝑎𝑟 = existing set of constructions
𝑛𝑒𝑤𝐺𝑟𝑎𝑚𝑚𝑎𝑟 = current set of constructions
𝑙𝑒𝑎𝑟𝑛𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 = construction learning algorithm
Main Loop

1 for observation in corpus[observationSize]:
2 newGrammar = learnConstructions(observation):
3 if grammar present:
4 grammar = merge(grammar, newGrammar

Table 27 Continuous Learning Algorithm

We expect the nature of constructions, in the aggregate, to change as structure
accumulates. For example, the number of lexical items will continue to grow
which means that the probability of any given lexical item will decrease. This
will, in turn, increase the encoding costs of lexical constraints. On the other
hand, the number of syntactic and semantic categories is fixed, although new
words can be added to existing categories. Thus, we expect that item-specific
constraints will become more costly over time and therefore less common; this
is one way in which constructions become more generalized over time.

The continuous learning algorithm itself is shown in Table 27. This is a
simple iterating algorithm, alternating between learning aand forgetting as new
usage is encountered. Constructions from a previous grammar are forgotten at
half the rate of newly learned constructions, which means that constructions

Computational Construction Grammar 93

become more entrenched the more cycles of continuous learning they go through.

Learning Lexical Syntactic Full
Round 1𝑠𝑡 2𝑛𝑑 1𝑠𝑡 2𝑛𝑑 1𝑠𝑡 2𝑛𝑑

Cycle 1 3,975 7 2,389 37 12,881 1,332
Cycle 2 4,231 8 2,583 48 16,296 1,774
Cycle 3 4,349 7 2,656 49 17,641 2,034
Cycle 4 4,399 10 2,723 60 18,686 2,287
Cycle 5 4,456 11 2,755 67 19,204 2,347
Final 3,657 8 2,435 62 17,001 1,954

Table 28 Construction Growth During Continuous Learning
By Total Number of Constructions (pg)

The accumulation of constructions during continuous learning is shown in
Table 28 for the Project Gutenberg corpus. The size of the constructicon is
divided into the three layers of grammars (lexical-only, syntactic-only, and full)
as well into first-order and second-order constructions within each. The final
round, shown here in bold, forgets constructions but does not learn any new
representations. This final additional forgetting round ensures that the most
recently learned constructions are not overly favored.

This table shows that continuous learning has little influence on the overall
size of lexical and syntactic grammars: these are almost the same size at the
end of the five cycles of learning and forgetting. In fact, lexical constructions
are even reduced after the final forgetting stage, so that there are fewer at the
end than after the first round. The full grammar, however, show a very different
pattern: continuous learning here accumulates more representations with each
additional round. The final grammar contains 33% more constructions than the
first round grammar. This indicates that the lexcal and syntactic constructicons
reach their limit while the more diverse representations in the full constructicon
continues to expand given new exposure. The purpose of this section has been
to explore the impact of a continuous learning algorithm in which the grammar
continues to be exposed to new usage. For the full grammar, containing more
complex constructions, this leads to a steady accumulation of structures.

94 Elements in Cognitive Linguistics

4 Conclusions

4.1 Learnability, Variability, and Confirmability
Construction grammar is a usage-based approach to syntax in which a

core theoretical concept, the construction, maps between form and meaning
at different levels of abstraction. The advantage of this construction-based
approach to syntax is that it provides a robust description of language acquisition
(Goldberg, 2006), of linguistic variation (Dunn, 2018a, 2019b), of figurative
meaning (Sullivan, 2013), and ultimately of the productive capability of grammar
itself (Goldberg, 2019). The disadvantage is that, given the rich representations
used for constructions, the hypothesis space of potential grammars is much
larger than in other approaches to syntax. At the same time, CxG insists that
language must be learned in a usage-based fashion without innate structure that
is specific to language itself. The combination of these two facts creates a major
challenge: construction grammar aims to describe more than do other syntactic
paradigms while assuming less about the language faculty.

The challenge, then, is to provide a theory of construction grammar that lives
up to this joint requirement of rich hypothesis spaces with no starting knowledge.
It is absolutely clear that a knowledge-based or introspection-based approach to
computational CxG is inherently inadequate. First, the concept of entrenchment
is a relationship between a particular construction and a particular population
using a particular register. This is a fundamentally empirical notion. Second, a
reliance on introspection undercuts any claims about learnability and innateness:
the linguist doing the analysis has already learned the language and with their
own knowledge in the loop we could never test how much knowledge is, in fact,
required to produce a construction grammar. Third, we must take seriously the
projection problem, in which usage does not constitute exposure until some
initial intermediate analysis is available (i.e., emerging structure). In short, until
a syntactic analysis has taken place it is impossible for the learner to even count
the frequency of different structures. A reliance on introspection and knowledge-
representation eliminates any hope of answering our starting questions about the
learnability, the variability, and the confirmability of construction grammars.

The only solution, then, is to view a construction grammar as a discovery-
device grammar which predicts a constructicon given a corpus of usage while
assuming no specific linguistic structures to start with, not even simple distinc-
tions between nouns and verbs. A computational construction grammar is not
a specific constructicon, in other words, a specific set of grammatical annota-
tions; it is rather a means of predicting a constructicon (emerging structure)
given a corpus (exposure). The universal grammar of this approach does not

Computational Construction Grammar 95

Figure 16 Emergence of Constructions
(Layers of Increasing Complexity)

contain specific structures but rather the learning mechanisms which create
those structures, which in this case can be defended as general non-linguistic
abilities. The increasing complexity of constructions from this perspective is
schematized in Figure 16, in which exposure leads to slot-constraints and word
classes (basic constructions) which are formed into sequences of slot-constraints
via chunking (first-order constructions) and then merged by clipping into larger
sequences (second-order constructions). Finally, clustering based on network
structure in the grammar produces more abstract families of related constructions
(third-order constructions), thus modelling hierarchy within the grammar.

This work directly confronts the problem of learnability, which is the
basic question of whether the rich representations of CxG can be acquired
without starting structure. As argued in Section 1.7, computational construction
grammar is uniquely situated to evaluate the question of learnability because of
the ability to strictly demarcate the amount and the source of exposure. While
computational work remains disconnected from participant-based studies, this
work does tell us a great deal about the emergence of structure at scale: across
the entire grammar, across many participants, and, in related work, across many
languages (Dunn, 2022a). This scale is impossible to achieve in laboratory
studies, confined to a small number of conveniently available participants.

At the same time, this work provides insight into the problem of variability

96 Elements in Cognitive Linguistics

in construction grammars. Unlike traditional grammars, the usage-based CxG
paradigm views a grammar as entrenched constructions, where entrenchment is
fundamentally related to exposure. This means that CxG predicts that grammars
will be subject to variation as a result of differences in exposure between learners.
This work has shown how grammars vary by their amount of exposure. Related
work has shown that there are robust population-based differences in construction
grammars (Dunn, 2018a, 2019b, 2019c, 2023a; Dunn & Wong, 2022) as well
as register-based differences (Dunn, 2022a; Dunn & Tayyar Madabushi, 2021).
Recent work has even shown the impact of individual exposure in the form of
individual differences in the grammar (Dunn & Nini, 2021). While variation
is a fundamental property of language, neither knowledge-based approaches
to CxG nor computational approaches to other syntactic paradigms have had
nearly this level of success in modelling it.

Finally, we have approached the problem of confirmability of construction
grammars by treating the learned constructicon as a hypothesis which can then
be evaluated by quantitative means but also by the intuitions of linguists. By
removing introspection from the formation of grammars, we make it possible to
apply introspection to analyze learned constructions without thereby causing
a circular line of reasoning. Computational construction grammar is, in this
sense, both replicable and falsfiable.

4.2 Remaining Challenges
The basic idea here, then, has been to show that a truly usage-based syntax

is, in fact, possible. In spite of the many advances represented here, however,
many problems still remain. In particular, much work needs to be done on
recursion, semantics, morphology, unfilled slots, and dependency structures in
usage-based computational construction grammar.

First, a fully recursive approach to CxG would allow any construction, once
learned, to potentially satisfy a slot-constraint in a first-order or second-order
construction. This is not currently implemented; clipping is a partially-recursive
method in which first-order constructions can only fill slots at the edges of
another construction.

Second, distributional semantics for a construction grammar also remains
unimplemented. This would likely proceed, for example, by adapting a self-
supervised language model (such as the cbow and sg models used to form word
classes) to observe the occurrence and co-occurrence of constructions. This
would produce a vector representation for constructions in much the same way
that current models produce vector representations for individual words.

Computational Construction Grammar 97

Third, while the basic constructions used here do provide a simplistic
separation between syntagmatic and paradigmatic relationships between words,
this work does not delve into a representation of constructional morphology.
From a theoretical perspective, we would expect a symmetry between the
emergence of constructions in syntactic structure and in morphological structure.

Fourth, the slot-constraints here vary in their level of abstractness (from
lexical to semantic constraints), where a more abstract constraint has a larger
and more heterogeneous range of fillers. What remains absent, however,
is the use of completely unfilled slots to allow the representation of non-
continguous constructions. Such an unfilled slot would allow the presence of an
unspecified set of other constructions to be placed within a matrix construction.
While important for representing many syntactic phenomena, this remains
unimplemented in this work.

Fifth, we have viewed a construction as a sequence of slot-constraints, in
part inspired by an underlying phrase structure grammar. However, we could
also have viewed constructions as slot-constraints arranged by dependency
relationships rather than linear order, specifying head-dependent relationships
between slots. There is no theoretical reason why CxG could not be built on top
of a dependency grammar and this remains a challenge for future work.

98

References

Bates, E., & Goodman, J. (1997). On the inseparability of grammar and the
lexicon: Evidence from acquisition, aphasia and real-time processing.
Language and Cognitive Processes, 12(5-6), 507-584. doi: 10.1080/
016909697386628

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural
probabilistic language model. Journal of Machine Learning Research, 3,
1137-1155.

Benoît, L., & Morin, C. (2023). No equivalence: A new principle of no
synonymy. Constructions, 15.

Beuls, K., & Van Eecke, P. (2023, March). Fluid construction grammar: State
of the art and future outlook. In C. Bonial & H. Tayyar Madabushi (Eds.),
Proceedings of the first international workshop on construction grammars
and nlp (cxgs+nlp, gurt/syntaxfest 2023) (pp. 41–50). Washington, D.C.:
Association for Computational Linguistics. Retrieved from https://
aclanthology.org/2023.cxgsnlp-1.6

Biber, D., & Conrad, S. (2009). Register, Genre, and Style. Cambridge, UK:
Cambridge University Press.

Bouma, G. (2009). Normalized (pointwise) mutual information in collocation
extraction. In C. Chiarcos, R. E. de Castilho, & M. Stede (Eds.), Proceed-
ings of the german society for computational linguistics and language
technology (Vol. 30, p. 31-40). Gunter Narr Verlag.

Brysbaert, M., Warriner, A., & Kuperman, V. (2014). Concreteness ratings for
40 thousand generally known english word lemmas. Behavior Research
Methods, 46, 904–911. doi: 10.3758/s13428-013-0403-5

Burdick, L., Kummerfeld, J. K., & Mihalcea, R. (2021). Analyzing the
Surprising Variability in Word Embedding Stability Across Languages.
In Proceedings of the 2021 conference on empirical methods in natural
language processing (pp. 5891–5901). Association for Computational
Linguistics.

Chen, S., & Goodman, J. (1999). An empirical study of smoothingtechniques
for language modeling. Computer Speech and Language, 13, 359–394.

Church, K., & Hanks, P. (1990). Word association norms, mutual information,
and lexicography. Computational Linguistics, 16(1), 22–29. doi: 10.3115/
981623.981633

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 conference of the north American chapter of the

Computational Construction Grammar 99

association for computational linguistics: Human language technologies,
volume 1 (long and short papers) (pp. 4171–4186). Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423

Doumen, J., Beuls, K., & Van Eecke, P. (2023). Modelling language acquisition
through syntactico-semantic pattern finding. In Findings of the association
for computational linguistics: Eacl 2023 (pp. 1347–1357). Association
for Computational Linguistics.

Dunn, J. (2010). Gradient semantic intuitions of metaphoric expressions.
Metaphor and Symbol, 26(1), 53-67. doi: 10.1080/10926488.2011
.535416

Dunn, J. (2013). How linguistic structure influences and helps to predict
metaphoric meaning. Cognitive Linguistics, 24(1), 33–66. doi: 10.1515/
cog-2013-0002

Dunn, J. (2017). Computational learning of construction grammars. Language
& Cognition, 9(2), 254–292.

Dunn, J. (2018a). Finding variants for construction-based dialectometry: A
corpus-based approach to regional cxgs. Cognitive Linguistics, 29(2),
275–311.

Dunn, J. (2018b). Modeling the Complexity and Descriptive Adequacy of
Construction Grammars. In Proceedings of the Society for Computation
in Linguistics, 81–90.

Dunn, J. (2018c). Multi-Unit Directional Measures of Association Moving
Beyond Pairs of Words. International Journal of Corpus Linguistics,
23(2), 183–215.

Dunn, J. (2019a). Frequency vs. Association for Constraint Selection in
Usage-Based Construction Grammar. In Proceedings of the workshop
on cognitive modeling and computational linguistics. Association for
Computational Linguistics.

Dunn, J. (2019b). Global Syntactic Variation in Seven Languages: Toward a
Computational Dialectology. Frontiers in Artificial Intelligence, 2, 15.
doi: 10.3389/frai.2019.00015

Dunn, J. (2019c). Modeling Global Syntactic Variation in English Using
Dialect Classification. In Proceedings of the sixth workshop on NLP for
similar languages, varieties and dialects (pp. 42–53). Association for
Computational Linguistics. doi: 10.18653/v1/W19-1405

Dunn, J. (2020). Mapping languages: the Corpus of Global Language Use.
Language Resources and Evaluation, 54, 999–1018. doi: 10.1007/
s10579-020-09489-2

Dunn, J. (2022a). Exposure and emergence in usage-based grammar: Computa-
tional experiments in 35 languages. Cognitive Linguistics.

100 Elements in Cognitive Linguistics

Dunn, J. (2022b). Natural language processing for corpus linguistics. Cambridge
University Press.

Dunn, J. (2023a). Syntactic variation across the grammar: modelling
a complex adaptive system. Frontiers in Complex Systems, 1. Re-
trieved from https://www.frontiersin.org/articles/10.3389/
fcpxs.2023.1273741 doi: 10.3389/fcpxs.2023.1273741

Dunn, J. (2023b, May). Variation and instability in dialect-based embed-
ding spaces. In Y. Scherrer, T. Jauhiainen, N. Ljubešić, P. Nakov,
J. Tiedemann, & M. Zampieri (Eds.), Tenth workshop on nlp for
similar languages, varieties and dialects (vardial 2023) (pp. 67–77).
Dubrovnik, Croatia: Association for Computational Linguistics. Re-
trieved from https://aclanthology.org/2023.vardial-1.7 doi:
10.18653/v1/2023.vardial-1.7

Dunn, J., Li, H., & Sastre, D. (2022, June). Predicting embedding reliability in
low-resource settings using corpus similarity measures. In N. Calzolari et
al. (Eds.), Proceedings of the thirteenth language resources and evaluation
conference (pp. 6461–6470). Marseille, France: European Language
Resources Association. Retrieved from https://aclanthology.org/
2022.lrec-1.693

Dunn, J., & Nini, A. (2021). Production vs Perception: The Role of Individuality
in Usage-Based Grammar Induction. In Proceedings of the workshop
on cognitive modeling and computational linguistics (pp. 149–159).
Association for Computational Linguistics.

Dunn, J., & Tayyar Madabushi, H. (2021). Learned Construction Grammars
Converge Across Registers Given Increased Exposure. In Conference on
natural language learning. Association for Computational Linguistics.

Dunn, J., & Wong, S. (2022, October). Stability of syntactic dialect classification
over space and time. In Proceedings of the 29th international conference
on computational linguistics (pp. 26–36). Gyeongju, Republic of Korea:
International Committee on Computational Linguistics. Retrieved from
https://aclanthology.org/2022.coling-1.3

Ellis, N. (2007). Language Acquisition as Rational Contingency Learning.
Applied Linguistics, 27(1), 1–24.

Fodor, J. D., & Crowther, C. (2002). Understanding stimulus poverty arguments.
The Linguistic Review, 19(1-2), 105–145. doi: 10.1515/tlir.19.1-2.105

Gazdar, G., Klein, E. H., Pullum, G. K., & Sag, I. A. (1985). Generalized
phrase structure grammar. Oxford: Blackwell.

Goldberg, A. (1995). Constructions: A construction grammar approach to
argument structure. Chicago, IL: Chicago University Press.

Goldberg, A. (2006). Constructions at work: The nature of generalization in

Computational Construction Grammar 101

language. Oxford: Oxford University Press.
Goldberg, A. (2019). Explain me this: Creativity, competition, and the partial

productivity of constructions. Princeton, NJ: Princeton University Press.
Goldsmith, J. (2001). Unsupervised Learning of the Morphology of a Natural

Language. Computational Linguistics, 27(2), 153–198.
Goldsmith, J. (2006). An Algorithm for the Unsupervised Learning of

Morphology. Natural Language Engineering, 12(4), 353–371.
Goldsmith, J. (2015, 06). Towards a new empiricism for linguistics. In

N. Chater, A. Clark, J. Goldsmith, & A. Perfors (Eds.), Empiricism and
language learnability. Oxford University Press. doi: 10.1093/acprof:oso/
9780198734260.003.0003

Grave, E., Bojanowski, P., Gupta, P., Joulin, A., & Mikolov, T. (2018). Learning
word vectors for 157 languages. In Proceedings of the international con-
ference on language resources and evaluation (p. 3483-3487). European
Language Resources Association.

Grune, D., & Jacobs, C. J. H. (2008). Parsing techniques: A practical guide
(2nd ed.). Berlin: Springer.

Grünwald, P. (2007). The minimum description length principle. MIT Press.
Hellrich, J., Kampe, B., & Hahn, U. (2019). The Influence of Down-Sampling

Strategies on SVD Word Embedding Stability. In Proceedings of the 3rd
workshop on evaluating vector space representations for nlp (pp. 18–26).
Association for Computational Linguistics.

Kesarwani, A. (2018). New york times comments. Kaggle. Retrieved from
https://www.kaggle.com/datasets/aashita/nyt-comments

Kneser, R., & Ney, H. (1995). Improved backing-off for m-gram language
modeling. In Proceedings of the international conference on acoustics,
speech, and signal processing (Vol. 1, p. 181-184 vol.1). IEEE. doi:
10.1109/ICASSP.1995.479394

Kohonen, O., Virpioja, S., & Lagus, K. (2010). Semi-supervised learning of
concatenative morphology. In Proceedings of the acl special interest group
on computational morphology and phonology (p. 78-86). Association for
Computational Linguistics.

Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-
acquisition ratings for 30,000 english words. Behavior Research Methods,
44, 978–990.

Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind
and its challenge to western thought. Basic Books.

Langacker, R. (2008). Cognitive Grammar: A Basic Introduction. Oxford:
Oxford University Press.

Levy, O., Goldberg, Y., & Dagan, I. (2015). Improving Distributional Similarity

102 Elements in Cognitive Linguistics

with Lessons Learned from Word Embeddings. Transactions of the
Association for Computational Linguistics, 3, 211–225. doi: 10.1162/
tacl_a_00134

Li, H., & Dunn, J. (2022). Corpus similarity measures remain robust across
diverse languages. Lingua, 275(103377).

Li, H., Dunn, J., & Nini, A. (2022). Register variation remains stable across 60
languages. Corpus Linguistics and Linguistic Theory.

Linzen, T. (2016, August). Issues in evaluating semantic spaces using word
analogies. In Proceedings of the 1st workshop on evaluating vector-space
representations for NLP (pp. 13–18). Berlin, Germany: Association for
Computational Linguistics. Retrieved from https://aclanthology
.org/W16-2503 doi: 10.18653/v1/W16-2503

Lison, P., & Tiedemann, J. (2016). OpenSubtitles2016: Extracting large
parallel corpora from movie and TV subtitles. In Proceedings of the
tenth international conference on language resources and evaluation
(LREC’16) (pp. 923–929). European Language Resources Association
(ELRA).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation
of word representations in vector space. arXiv. doi: 10.48550/ARXIV
.1301.3781

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In
Proceedings of the 26th international conference on neural information
processing systems - volume 2 (pp. 3111–3119). Curran Associates Inc.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological Review,
63(2), 81-97.

Nevens, J., Doumen, J., Van Eecke, P., & Beuls, K. (2022). Language acquisition
through intention reading and pattern finding. In Proceedings of the
29th international conference on computational linguistics (pp. 15–25).
International Committee on Computational Linguistics.

Nirenburg, S., & Raskin, V. (2004). Ontological semantics. MIT Press.
Ortman, M. (2018). Wikipedia sentences. Kaggle. Retrieved from https://

www.kaggle.com/datasets/mikeortman/wikipedia-sentences
Perek, F., & Patten, A. L. (2019). Towards an English Constructicon using

patterns and frames [Journal Article]. International Journal of Corpus
Linguistics, 24(3), 354–384. doi: 10.1075/ĳcl.00016.per

Piao, S., Bianchi, F., Dayrell, C., D’egidio, A., & Rayson, P. (2015). Devel-
opment of the multilingual semantic annotation system. In Proceedings
of the 2015 conference of the north american chapter of the associa-

Computational Construction Grammar 103

tion for computational linguistics: Human language technologies (pp.
1268–1274). Association for Computational Linguistics.

Rae, J. W., Potapenko, A., Jayakumar, S. M., & Lillicrap, T. P. (2019).
Compressive transformers for long-range sequence modelling. arXiv. doi:
10.48550/ARXIV.1911.05507

Rousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Computational and Applied Mathematics,
20, 53-65.

Schler, J., Koppel, M., Argamon, S., & Pennebaker, J. (2006). Effects of age
and gender on blogging. In Proceedings of 2006 aaai spring symposium
on computational approaches for analyzing weblogs.

Schubert, E., & Lenssen, L. (2022). Fast k-medoids clustering in rust and
python. Journal of Open Source Software, 7(75), 4183.

Sullivan, K. (2013). Frames and constructions in metaphoric language.
Amsterdam: John Benjamins.

Taylor, J. (2004). Linguistic categorization (3rd ed.). Oxford University Press.
Tiedemann, J. (2012). Parallel data, tools and interfaces in OPUS. In Proceed-

ings of the eighth international conference on language resources and
evaluation (LREC’12) (pp. 2214–2218). European Language Resources
Association (ELRA).

Vlach, H. (2019). Learning to remember words: Memory constraints as double-
edged sword mechanisms of language development. Child Development
Perspectives, 13, 159-165. doi: 10.1111/cdep.12337

Vlach, H., & DeBrock, C. A. (2019). Statistics learned are statistics forgotten:
Children’s retention and retrieval of cross-situational word learning.
Journal of Experimental Psychology: Learning, Memory, and Cognition,
45, 700-711. doi: 10.1037/xlm0000611

Wible, D., & Tsao, N. (2010). StringNet as a Computational Resource for
Discovering and Investigating Linguistic Constructions. In Proceedings
of the workshop on extracting and using constructions in computational
linguistics (pp. 25–31). Association for Computational Linguistics.

Wible, D., & Tsao, N.-L. (2020). Constructions and the problem of discovery:
A case for the paradigmatic:. Corpus Linguistics and Linguistic Theory,
16(1), 67–93. Retrieved from https://doi.org/10.1515/cllt-2017
-0008 doi: doi:10.1515/cllt-2017-0008

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks
for text classification. arXiv. doi: 10.48550/ARXIV.1509.01626

